
Dibbler – a portable DHCPv6

User’s guide

Tomasz Mrugalski
thomson(at)klub.com.pl

2011-05-11

0.8.0

mailto:thomson(at)klub.com.pl

Dibbler – a portable DHCPv6 User’s Guide 2

Contents

1 Intro 5
1.1 Overview . 5
1.2 Supported parameters . 7
1.3 Not supported features . 8
1.4 Operating System Requirements . 9
1.5 Supported platforms . 9

2 Installation and usage 10
2.1 Linux installation . 10
2.2 Windows installation . 11
2.3 Mac OS X installation . 11
2.4 IPv6 support . 11

2.4.1 Setting up IPv6 in Linux . 11
2.4.2 Setting up IPv6 in Windows Vista and Win7 . 12
2.4.3 Setting up IPv6 in Windows XP and 2003 . 12
2.4.4 Setting up IPv6 in Windows 2000 . 12
2.4.5 Setting up IPv6 in Windows NT4 . 13

2.5 Compilation . 13
2.5.1 Linux compilation . 13
2.5.2 Modern Windows (XP...Win7) compilation . 13
2.5.3 Legacy Windows (NT/2000) compilation . 14
2.5.4 Mac OS X compilation . 14

3 Features HOWTO 15
3.1 Prefix delegation . 15
3.2 Relays . 15
3.3 Custom options . 16
3.4 Confirm . 18
3.5 Mobility . 18
3.6 Leasequery . 19
3.7 Stateless vs stateful and IA, TA options . 19
3.8 DNS Update . 21

3.8.1 Example BIND configuration . 22
3.8.2 Dynamic DNS Testing and tips . 24
3.8.3 Accepting Unknown FQDNs . 25

3.9 Introduction to client classification . 26
3.9.1 Client class declaration . 27
3.9.2 Access control . 27
3.9.3 Assigning clients to defined classes . 28
3.9.4 Examples of Client-Class Classifying . 28

3.10 Server address caching . 29
3.11 XML files . 29
3.12 Authentication and Authorization . 30
3.13 Exceptions: per client configuration . 31
3.14 Vendor specific information . 31
3.15 Not connected interfaces (inactive-mode) . 32
3.16 Parameters not supported by server (insist-mode) . 33
3.17 Different DUID types . 33

Dibbler – a portable DHCPv6 User’s Guide 3

3.18 Debugging/compatibility features . 33
3.18.1 Interface-id option . 34
3.18.2 Non-empty IA NA option . 34
3.18.3 Providing address/prefix hints . 34

3.19 Experimental features . 35
3.19.1 Address Parameters . 35
3.19.2 External scripts . 36
3.19.3 Remote Autoconfiguration . 36

3.20 Obsoleted experimental features . 38
3.20.1 Mapping prefix . 38
3.20.2 Tunnel mode . 39

4 Configuration files 40
4.1 Data types . 40
4.2 Scopes . 40
4.3 Comments . 40
4.4 Client configuration file . 41

4.4.1 Interface declaration . 41
4.4.2 IA declaration . 41
4.4.3 Address declaration . 42
4.4.4 Standard options . 42
4.4.5 Extension options . 44
4.4.6 Stateless configuration . 46
4.4.7 Relay support . 46

4.5 Client configuration examples . 47
4.5.1 Example 1: Default . 47
4.5.2 Example 2: DNS . 47
4.5.3 Example 3: Timeouts and specific address . 47
4.5.4 Example 4: More than one address . 48
4.5.5 Example 5: Quick configuration using Rapid-commit 48
4.5.6 Example 6: Stateless mode . 49
4.5.7 Example 7: Dynamic DNS (FQDN) . 49
4.5.8 Example 8: Interface indexes . 50
4.5.9 Example 9: Vendor-specific options . 50
4.5.10 Example 10: Unicast communication . 51
4.5.11 Example 11: Prefix delegation . 51
4.5.12 Example 12: Insist mode . 52
4.5.13 Example 13: Inactive mode . 52
4.5.14 Example 14: Authentication . 52
4.5.15 Example 15: Skip Confirm . 52
4.5.16 Example 15: User-defined IAID . 53
4.5.17 Example 16: DS-Lite tunnel (AFTR) . 53
4.5.18 Example 17: Custom options . 53
4.5.19 Example 18: Remote Autoconfiguration . 54

4.6 Server configuration file . 54
4.6.1 Global scope . 54
4.6.2 Interface declaration . 54
4.6.3 Class scope . 55
4.6.4 Standard options . 55
4.6.5 Additional options . 57

Dibbler – a portable DHCPv6 User’s Guide 4

4.7 Server configuration examples . 59
4.7.1 Example 1: Simple . 59
4.7.2 Example 2: Timeouts . 59
4.7.3 Example 3: Limiting amount of addresses . 60
4.7.4 Example 4: Unicast communication . 60
4.7.5 Example 5: Rapid-commit . 61
4.7.6 Example 6: Access control . 61
4.7.7 Example 7: Multiple classes . 61
4.7.8 Example 8: Relay support . 62
4.7.9 Example 9: Cascade 2 relays . 63
4.7.10 Example 10: Dynamic DNS (FQDN) . 63
4.7.11 Example 11: Vendor-specific Information option 64
4.7.12 Example 12: Per client configuration . 65
4.7.13 Example 13: Prefix delegation . 66
4.7.14 Example 14: Multiple prefixes . 66
4.7.15 Example 15: Inactive mode . 67
4.7.16 Example 16: Leasequery . 67
4.7.17 Example 17: Authentication . 67
4.7.18 Example 18: Relay support with unknown interface-id 68
4.7.19 Example 19: DS-Lite tunnel (AFTR) . 68
4.7.20 Example 20: Custom options . 68
4.7.21 Example 21: Remote Autoconfiguration . 69

4.8 Relay configuration file . 69
4.8.1 Global scope . 69
4.8.2 Interface declaration . 69
4.8.3 Options . 69

4.9 Relay configuration examples . 70
4.9.1 Example 1: Simple . 71
4.9.2 Example 2: Unicast/multicast . 71
4.9.3 Example 3: Multiple interfaces . 71
4.9.4 Example 4: 2 relays . 72
4.9.5 Example 5: Guess-mode . 73
4.9.6 Example 6: Relaying to multicast . 73

4.10 Requestor configuration . 74

5 Frequently Asked Questions 74
5.1 Common Questions . 74
5.2 Linux specific questions . 75
5.3 Windows specific questions . 75

6 Miscellaneous topics 76
6.1 History . 76
6.2 Contact and reporting bugs . 76
6.3 Mailing lists . 76
6.4 Thanks and greetings . 77

7 Acknowledgements 78

Bibliography 80

Dibbler – a portable DHCPv6 User’s Guide 5

1 Intro

First of all, as an author I would like to thank you for your interest in this DHCPv6 implementation. If
this documentation doesn’t answer your questions or you have any suggestions, feel free to contact me. See
Contact section for details. Also be sure to check out Dibbler website: http://klub.com.pl/dhcpv6/.

Tomasz Mrugalski

1.1 Overview

Dynamic Host Configuration Protocol for IPv6, often abbreviated as DHCPv6, is a protocol, which is
used to automatically configure IPv6 capable computers and other equipment located in a local network.
This protocol defines clients (i.e. nodes, which want to be configured), servers (i.e. nodes, which provide
configuration to clients) and relays (i.e. nodes, which are connected to more than one network and are
able to forward traffic between local clients and remote servers). Also, special type of DHCPv6 entity
called requestor has been defined. It is used by network administrator to query servers about their status
and assigned parameters.

Dibbler is a portable DHCPv6 solution, which features server, client and relay. Currently there are
ports available for many Windows platforms ranging from NT4 to Windows 7, Linux 2.4/2.6 systems
and Mac OS (experimental). See Section 1.4 for details. It supports both stateful (i.e. IPv6 address
granting) and stateless (i.e. options granting) autoconfiguration. Besides basic functionality (specified in
basic DHCPv6 spec, RFC3315 [5]), it also offers serveral enhancements, e.g. DNS servers and domain
names configuration.

Dibbler is an open source software, distributed under GNU GPL v2 licence. It means that it is freely
available, free of charge and can be used by anyone (including commercial users). Source code is also
provided, so anyone skilled enough can fix bugs, add new features and distribute his/her own version.

Requestor support has been added in version 0.7.0RC1. Requestor is a separate entity, which sends
queries to the server regarding leases to specific clients. It is possible to ask a server, who has specific
address or what addresses are assigned to a specific client. This feature is part of the lease query mechanism
defined in [15] and is considered advanced topic. If you don’t know what lease query is, you definetely
don’t need it.

Figure 1: General DHCPv6 operation

As for now, Dibbler supports following features:

• Basic server discovery and address assignment (SOLICIT, ADVERTISE, REQUEST and REPLY
messages) – This is a most common case: client discovers servers available in the local network,
then asks for an address (and possibly additional options like DNS configuration), which is granted
by a server.

• Server redundancy/Best server discovery – when client detects more than one server available (by
receiving more than one ADVERTISE message), it chooses the best one and remembers remaining
ones as a backup.

http://klub.com.pl/dhcpv6/
http://www.gnu.org/copyleft/gpl.html

Dibbler – a portable DHCPv6 User’s Guide 6

Figure 2: Several clients supported by one server

• Multiple servers support – Client is capable of discovering and maintaning communication with
several servers. For example, client would like to have 5 addresses configured. Prefered server can
only grant 3, so client send request for remaining 2 addresses to one of the remaining servers.

• Relay support – In a larger network, which contains several Ethernet segments and/or wireless
areas, sometimes centrally located DHCPv6 server might not be directly reachable. In such cace,
additional proxies, so called relays, might be deployed to relay communication between clients and
a remote server. Dibbler server supports indirect communication with clients via relays. Stand-
alone, lightweight relay implementation is also available. Clients are capable of talking to the server
directly or via relays.

• Address renewal – After receiving address from a server, client might be instructed to renew its
address at regular intervals. Client periodically sends RENEW messege to a server, which granted
its address. In case of communication failure, client is also able to attempt emergency address
renewal (i.e. it sends REBIND message to any server).

• Unicast communication – if specific conditions are met, client could send messages directly to a
server’s unicast address, so additional servers does not need to process those messages. It also
improves effciency, as all nodes present in LAN segment receive multicast packets.1

• Duplicate address detection – Client is able to detect and properly handle faulty situation, when
server grants an address which is illegaly used by some other host. It will inform server of such
circumstances (using DECLINE message), and request another address. Server will mark this
address as used by unknown host, and will assign another address to a client.

• Power failure/crash support – After client recovers from a crash or a power failure, it still can have
valid addresses assigned. In such circumstances, client uses CONFIRM message, to config if those
addresses are still valid.

1Nodes, which do not belong to specific multicast group, drop those packets silently. However, determining if host belongs
or not to a group must be performed on each node. Also using multicast communication increases the network load.

Dibbler – a portable DHCPv6 User’s Guide 7

Figure 3: Redundancy: several servers

• Link change detection – Client can be instructed to monitor its link state. Once it detects

• Normal and temporary addresses – Depending on its purpose, client can be configured to ask for
normal (IA NA option) or temporary (IA TA option). Although use of temporary addresses is
rather uncommon, both dibbler server and client support it.

• Hint system – Client can be configured to send various parameters and addresses in the REQUEST
message. It will be treated as a hint by the server. If such hint is valid, it will be granted for this
client.

• Server caching – Server can cache granted addresses, so the same client will receive the same address
each time it asks. Size of this cache can be configured.

• Stateless mode – Client can be configured to not ask for any addresses, but the configuration
options only. In such case, when no addresses are granted, such configuration is called stateless
(INFORMATION-REQUEST message is used instead of normal REQUEST).

• Rapid Commit – Sometimes it is desirable to quicken configuration process. If both client and server
are configured to use rapid commit, address assignment procedure can be shortened to 2 messages,
instead of usual 4. Major advantage is lesser network usage and quicker client startup time.

1.2 Supported parameters

Except RFC3315-specified behavior [5], Dibbler also supports several enhancements:

• DNS Servers – During normal operation, almost all hosts require constant use of the DNS servers.
It is necessary for event basic operations, like web surfing. DHCPv6 client can ask for information
about DNS servers and DHCPv6 server will provide necessary information. [9]

• Domain Name – Client might be interested in obtaining information about its domain. Properly
configured domain allow reference to a different hosts in the same domain using hostname only, not

Dibbler – a portable DHCPv6 User’s Guide 8

the full domain name, e.g. alice.example.com with properly configured domain can refer to another
host in the same domain by using ’bob’ only, instead of full name bob.example.com. [9]

• NTP Servers – To prevent clock misconfiguration and drift, NTP protocol [1] can be used to syn-
chronize clocks. However, to successful use it, location of near NTP servers must be known. Dibbler
is able to configure this information. [13]

• Time Zone – To avoid time-related ambiguation, each host should have timezone set properly.
Dibbler is able to pass this parameter to all clients, who request it. [17]

• SIP Servers – Session Initiation Protocol (SIP) [4] is commonly used in VoIP solutions. One of the
necessary information is SIP server addresses. This information can be passed to the clients. [6]

• SIP Domain Name – SIP domain name is another important parameter of the VoIP capable nodes.
This parameter can be passed to all clients, who ask for it. [6]

• NIS, NIS+ Server – Network Information Service is a protocol for sharing authentication parameters
between multiple Unix or Linux nodes. Both NIS and NIS+ server adresses can be passed to the
clients. [11]

• NIS, NIS+ Domain Name – NIS or NIS+ domain name is another necessary parameter for NIS or
NIS+. It can be obtained from the DHCPv6 server to all clients, who require it. [11]

• Option Renewal Mechanism (Lifetime option)– All of the options mentioned on this list can be
refreshed periodically. This might be handy if one of those parameters change. [16]

• Dynamic DNS Updates – Server can assign a fully qualified domain name for a client. To make such
name useful, DNS servers must be informed that such name is bound to a specific IPv6 address.
This procedure is called DNS Update. There are two kinds of the DNS Updates: forward and
reverse. First is used to translate domain name to an address. The second one is used to obtain full
domain name of a known address. See section 3.8 for details. [14]

• Prefix Delegation – Server can be configured to manage a prefix pool, i.e. clients will be assigned
whole pools instead on single addresses. This is very useful, when clients are not simple end users
(e.g. desktop computers or laptops), but rather are routers (e.g. cable modems). This functionality
is often used for remote configuration of IPv6 routers. [8]

1.3 Not supported features

Although list of the supported features increases with each release, some parts of the spec are not
implemented yet. Below is a list of such features:

• Authorization [5]

• Reconfigure mechanism [5]

• Any kind of security in DNS Updates [14]

• DNS Updates are done over TCP over IPv6 only

Dibbler – a portable DHCPv6 User’s Guide 9

1.4 Operating System Requirements

Dibbler can be run on Linux systems with kernels from 2.4 and 2.6 series. IPv6 (compiled into kernel or
as module) support is necessary to run dibbler. DHCPv6 uses UDP ports below 1024, so root privileges
are required. They’re also required to add, modify and delete various system parameters, e.g. IPv6
addresses.

Dibbler also runs on any Windows systems from Windows XP (Service Pack 1 or later) to Windows
7. To install various Dibbler parts (server, client or relay) as services, administrator privileges might be
required. Support for Windows NT4 and 2000 is limited and considered experimental. Due to lack of
support and any kind of informations from Microsoft, this is not expected to change.

There is also experimental port for Mac OS systems, but due to author’s lack of access to Mac
hardware, Dibbler is not released for those platforms.

See RELEASE-NOTES for details about version-specific upgrades, fixes and features.

1.5 Supported platforms

Although Dibbler was developed on the i386 architecture, there are ports available for other archi-
tectures: IA64, AMD64, PowerPC, HPPA, Sparc, MIPS, S/390 and Alpha. They are available in the
PLD, Gentoo and Debian Linux distributions. You can download system and distribution specficic pack-
ages from http://www.pld-linux.org/, http://www.gentoo.org or http://www.debian.org. Keep in
mind that author has not tested those ports, so there might be some unknown issues present. If this is
the case, be sure to notify package maintainers and possibly the author.

If your system is not on the list, don’t despair. Dibbler is fully portable. Core logic is system
independent and coded in C++ language. There are also several low-level functions, which are system
specific. They’re used for adding addresses, retrieving information about interfaces, setting DNS servers
and so on. Porting Dibbler to other systems (and even other architectures) would require implementic
only those serveral system-specific functions. See Developer’s Guide for details.

http://www.pld-linux.org/
http://www.gentoo.org
http://www.debian.org

Dibbler – a portable DHCPv6 User’s Guide 10

2 Installation and usage

Client, server and relay are installed in the same way. Installation method is different in Windows and
Linux systems, so each system installation is described separately. To simplify installation, it assumes
that binary versions are used2.

2.1 Linux installation

Starting with 0.4.0, Dibbler consists of 3 different elements: client, server and relay. During writing
this documentation, Dibbler is already present in following Linux distributions:

Debian GNU/Linux – use standard tools (apt-get, aptitude) to install dibbler-client, dibbler-server,
dibbler-relay or dibbler-doc packages (e.g. apt-get install dibbler-client)

Gentoo Linux – use emerge to install dibbler (e.g. emerge dibbler).

PLD GNU/Linux – use standard PLD’s poldek tool to install dibbler package.

If you are using other Linux distribution, obtain (e.g. download from http://klub.com.pl/dhcpv6/)
an archive, which suits your needs. Currently there are available RPM packages (which can be used in
RedHat, Fedora Core, Mandrake or PLD distribution), DEB packages (suitable for Debian, Ubuntu or
Knoppix) and ebuild (for Gentoo users). To install rpm package, execute rpm -i archive.rpm command.
For example, to install dibbler 0.4.1, issue following command:

rpm -i dibbler-0.4.1-1.i386.rpm

To install Dibbler on Debian or other system with dpkg management system, run dpkg− iarchive.deb
command. For example, to install server, issue following command:

dpkg -i dibbler-server_0.4.1-1_i386.deb

To install Dibbler in Gentoo systems, just type:

emerge dibbler

If you would like to install Dibbler from sources, please download tar.gz source archive, extract it,
type make followed by target (e.g. server, client or relay3). After successful compilation type make install.
For example, to build server and relay, type:

tar zxvf dibbler-0.8.0-src.tar.gz

make server relay

make install

mkdir -p /var/lib/dibbler

Depending what functionality do you want to use (server,client or relay), you should edit configuration
file (client.conf for client, server.conf for server and relay.conf for relay). All configuration files
should be placed in the /etc/dibbler directory. Also make sure that /var/lib/dibbler directory is
present and is writeable. After editing configuration files, issue one of the following commands:

dibbler-server start

dibbler-client start

dibbler-relay start

2Compilation is not required, usually binary version can be used. Compilation should be performed by advanced users
only, see Compilation section for details.

3To get full target list, type: make help.

http://debian.org
http://www.gentoo.org
http://www.pld-linux.org
http://klub.com.pl/dhcpv6/

Dibbler – a portable DHCPv6 User’s Guide 11

start parameter requires little explanation. It instructs Dibbler to run in daemon mode – detach
from console and run in the background. During configuration files fine-tuning, it is ofter better to watch
Dibbler’s bahavior instantly. In this case, use run instead of start parameter. Dibbler will present its
messages on your console instead of log files. To finish it, press ctrl-c.

To stop server, client or relay running in daemon mode, type:

dibbler-server stop

dibbler-client stop

dibbler-relay stop

To see, if client, server or relay are running, type:

dibbler-server status

dibbler-client status

dibbler-relay status

To see full list of available commands, type dibbler-server, dibbler-client or dibbler-relay

without any parameters.

2.2 Windows installation

Dibbler supports Windows XP and 2003 since the 0.2.1-RC1 release. Support for Vista was added
somewhere around 0.7.x. Support for Windows 7 was added in 0.8.0RC1. In version 0.4.1 exprimental
support for Windows NT4 and 2000 was added. The easiest way of Windows installation is to download
clickable Windows installer. It can be downloaded from http://klub.com.pl/dhcpv6/. After download-
ing, click on it and follow on screen instructions. Dibbler will be installed and all required links will be
placed in the Start menu. Note that there are two Windows versions (ports): one for modern systems
(XP/2003/Vista and Win7) and one for archaic ones (NT4/2000). Make sure to use proper port. If you
haven’t set up IPv6 support, see following sections for details.

2.3 Mac OS X installation

As of 0.8.0 release, ready to use dmg packages are not provided, therefore dibbler has to be compiled.
Please follow section 2.5.4 for details on Dibbler compilation on Mac OS X.

2.4 IPv6 support

Some systems does not have IPv6 enabled by default. In that is the case, you can skip following
subsections safely. If you are not sure, here is an easy way to check it. To verify if you have IPv6 support,
execute following command: ping6 ::1 (Linux) or ping ::1 (Windows). If you get replies, you have
IPv6 already installed.

2.4.1 Setting up IPv6 in Linux

Most modern Linux distributions have IPv6 enabled by default, so there is very good chance that
nothing has to be done. However, if that is not the case, IPv6 can be enabled in Linux systems in two
ways: compiled directly into kernel or as a module. If you don’t have IPv6 enabled, try to load IPv6
module: modprobe ipv6 (command executed as root) and try ping6 once more. If that fails, you have to
recompile kernel to support IPv6. There are numerous descriptions how to recompile kernel available on
the web, just type ”kernel compilation howto” in Google.

http://klub.com.pl/dhcpv6/
http://www.google.com

Dibbler – a portable DHCPv6 User’s Guide 12

2.4.2 Setting up IPv6 in Windows Vista and Win7

Both systems have IPv6 enabled by default. Also note that Win7 also has DHCPv6 client built-in, so
you may use it as well.

2.4.3 Setting up IPv6 in Windows XP and 2003

If you have already working IPv6 support, you can safely skip this section. The easiest way to enable
IPv6 support is to right click on the My network place on the desktop, select Properties, then locate
your network interface, right click it and select Properties. Then click Install..., choose protocol
and then IPv6 (its naming is somewhat diffrent depending on what Service Pack you have installed).
In XP, there’s much quicker way to install IPv6. Simply run command ipv6 install (i.e. hit Start...,
choose run... and then type ipv6 install). Also make sure that you have built-in firewall disabled. See
Frequently Asked Question section for details.

2.4.4 Setting up IPv6 in Windows 2000

If you have already working IPv6 support, you can safely skip this section. The following description
was provided by Sob ((sob(at)hisoftware.cz). Thanks. This description assumes that ServicePack 4 is
already installed.

1. Download the file tpipv6-001205.exe from: http://msdn.microsoft.com/downloads/sdks/platform/
tpipv6.asp and save it to a local folder (for example, C:\IPv6TP).

2. From the local folder (C:\IPv6TP), run Tpipv6-001205.exe and extract the files to the same loca-
tion.

3. From the local folder (C:\IPv6TP), run Setup.exe -x and extract the files to a subfolder of the
current folder (for example, C:\IPv6TP\files).

4. From the folder containing the extracted files (C:\IPv6TP\files), open the file Hotfix.inf in a
text editor.

5. In the [Version] section of the Hotfix.inf file, change the line NTServicePackVersion=256 to NTSer-
vicePackVersion=1024, and then save changes. 4

6. From the folder containing the extracted files (C:\IPv6TP\files), run Hotfix.exe.

7. Restart the computer when prompted.

8. After the computer is restarted, from the Windows 2000 desktop, click Start, point to Settings, and
then click Network and Dial-up Connections. As an alternative, you can right-click My Network
Places, and then click Properties.

9. Right-click the Ethernet-based network interface to which you want to add the IPv6 protocol, and
then click Properties. Typically, this network interface is named Local Area Connection.

10. Click Install.

11. In the Select Network Component Type dialog box, click Protocol, and then click Add.

12. In the Select Network Protocol dialog box, click Microsoft IPv6 Protocol and then click OK.

13. Click Close to close the Local Area Connection Properties dialog box.

4This defines Service Pack requirement. NTServicePackVersion is a ServicePack version multiplied by 256. If there would
be SP5 available, this value should have been changed to the 1280.

mailto:sob(at)hisoftware.cz
http://msdn.microsoft.com/downloads/sdks/platform/tpipv6.asp
http://msdn.microsoft.com/downloads/sdks/platform/tpipv6.asp

Dibbler – a portable DHCPv6 User’s Guide 13

2.4.5 Setting up IPv6 in Windows NT4

If you have already working IPv6 support, you can safely skip this section. The following description
was provided by The following description was provided by Sob (sob(at)hisoftware.cz). Thanks.

1. Download the file msripv6-bin-1-4.exe from: http://research.microsoft.com/msripv6/msripv6.
htmMicrosoft and save it to a local folder (for example, C:\IPv6Kit).

2. From the local folder (C:\IPv6Kit), run msripv6-bin-1-4.exe and extract the files to the same
location.

3. Start the Control Panel’s ”Network” applet (an alternative way to do this is to right-click on
”Network Neighborhood” and select ”Properties”) and select the ”Protocols” tab.

4. Click the ”Add...” button and then ”Have Disk...”. When it asks you for a disk, give it the full
pathname to where you downloaded the binary distribution kit (C:\IPv6Kit).

5. IPv6 is now installed.

2.5 Compilation

Dibbler is distributed in 2 versions: binary and source code. For most users, binary version is better
choice. Compilation is performed by more experienced users, preferably with programming knowledge.
It does not offer significant advantages over binary version, only allows to understand internal Dibbler
workings. You probably want just install and use Dibbler. If that is your case, read section named
Installation. However, if you are skilled enough, you might want to tune several Dibbler aspects during
compilation. See Dibbler Developer’s Guide for information about various compilation parameters.

2.5.1 Linux compilation

Compilation in most cases is not necessary and should be performed only by experienced users. To
compile dibbler, issue following commands:

tar zxvf dibbler-0.8.0-src.tar.gz

cd dibbler

make server client relay doc

That’s it. You can also install it in the system by issuing command:

make install

If there are problems with missing/different compiler version, take a look at the beginning of the
Makefile.inc file. Dibbler was compiled using gcc 2.95, 3.0, 3.2, 3.3, 3.4, 4.0 and 4.1 versions. Note that
2.95 is now considered obsolete and was not tested for some time. Lexer files were generated using flex
2.5.33. Parser file were created using bison++ 1.21.95.

If there are problems with SrvLexer.cpp and ClntLexer.cpp files, please use FlexLexer.h in Port-
linux/ directory. Most simple way to do this is to copy this file to /usr/include directory.

2.5.2 Modern Windows (XP...Win7) compilation

Download dibbler-0.8.0 -src.tar.gz and extract it. In Port-win32 there are several project files (for
server, client and relay) for MS Visual Studio 2008. According to authors knowledge, it is possible to com-
pile dibbler using free MS Visutal C++ Express 2008 edition. Previous dibbler releases were compiled us-
ing MS Visual Studio .NET (sometimes called 2002) and 2003. Those versions are not supported anymore.

5flex and bison++ tools are not required to compile Dibbler. Generated files are placed in CVS and in tar.gz archives

mailto:sob(at)hisoftware.cz
http://research.microsoft.com/msripv6/msripv6.htm
http://research.microsoft.com/msripv6/msripv6.htm

Dibbler – a portable DHCPv6 User’s Guide 14

It might work with newest dibber version, but there are no guarantee. Open dibbler-win32.vs2008.sln

solution file click Build command. That should start compilation. After a while, binary exe files will be
stored in the Debug/ or Release/ directories.

2.5.3 Legacy Windows (NT/2000) compilation

Windows NT4/2000 port is considered experimental, but there are reports that it works just fine. To
compile it, you should download dev-cpp (http://www.bloodshed.net/dev/devcpp.html), a free IDE
for Windows utilising minGW port of the gcc for Windows. Run dev-cpp, click ,,open project...”, and
open one of the *.dev files located in the Port-winnt2k directory, then click compile. You also should
take a look at Port-winnt2k/INFO file for details.

2.5.4 Mac OS X compilation

Mac OS X is supported since 0.8.0 version. Currently support for this platform is usable, but there
are still several limitations:

• there are no ready to use binary (dmg) packages

• client is not able to configure DNS servers or domain name informations

• compilation requires simple makefile modification

To compile Dibbler on Mac OS X, please download and extract the latest sources:

tar zxvf dibbler-0.8.0-src.tar.gz

After extraction is complete, edit Makefile.inc file, comment out Linux section (marked as === Port: Linux ===)
and uncomment Mac OS X section (marked as === Port: Mac OS ===). After that is complete, following
command should build required components:

make server client relay

http://www.bloodshed.net/dev/devcpp.html

Dibbler – a portable DHCPv6 User’s Guide 15

3 Features HOWTO

This section contains information about setting up various Dibbler features. Since this section was
added recently, it is not yet comprehensive. That is expected to change.

3.1 Prefix delegation

Prefix delegation is a mechanism that allows two routers to delegate (“assign”) prefixes in similar way
as server can delegate (“lease”) addresses to hosts. As specified in [8]: The prefix delegation mechanism is
intended for simple delegation of prefixes from a delegating router to requesting routers. It is appropriate
for situations in which the delegating router does not have knowledge about the topology of the networks to
which the requesting router is attached, and the delegating router does not require other information aside
from the identity of the requesting router to choose a prefix for delegation. For example, these options
would be used by a service provider to assign a prefix to a Customer Premise Equipment (CPE) device
acting as a router between the subscriber’s internal network and the service provider’s core network.

To configure server to provide prefixes, a pool must be defined and also client prefixes’ length. For
example section below assigns 2001:db8::/32 pool to be managed by this server. From this pool, server
will assign /48 prefixes to the clients. For example, client can receive prefix 2001:db8:7c34::/48.

pd-class {

pd-pool 2001:db8::/32

pd-length 48

}

As a general rule, server will provide random prefix to a client, unless client provided a hint. The full
prefix assignment algorithm is as follows:

1. client didn’t provide any hints: one prefix from each pool will be granted

2. client has provided hint and that is valid (supported and unused): requested prefix will be granted

3. client has provided hint, which belongs to supported pool, but this prefix is used: other prefix from
that pool will be asigned

4. client has provided hint, but it is invalid (not beloninging to a supported pool, multicast or link-
local): see point 1

Dibbler implementation supports prefix delegation, as specified in [8]. Up to and including 0.7.3
version, client was also capable to do non-standard tricks with delegated prefix if it was a host, rather than
router. This mode of operation was removed in 0.8.0RC1. Now client behaves the same way, regardless
if it is a host or a router. When client receives prefix on one interface (e.g. prefix 2000:1234:7c34::/48
received on eth0) it will generate subprefixes for all other interfaces, which are up, running, non-loopback
and multicast capable. In the example depicted on Fig. 3.1, received prefix was split into 3 prefixes:
2000:1234:7c34:1000::/56 for eth1, 2000:1234:7c34:2000::/56 for eth2 and 2000:1234:7c34:3000::/56 for
eth3.

It is also possible to define multiple prefix pools. See section 4.7.13 for simple prefix delegation
configuration for server or section 4.7.14 for multiple prefixes configuration. Also section 4.5.11 provides
information related to client configuration.

3.2 Relays

In small networks, all nodes (server, hosts and routers) are connected to the same network segment
– usually Ethernet segment or a single access point or hotspot. This is very convenient as all clients can

Dibbler – a portable DHCPv6 User’s Guide 16

Figure 4: Prefix delegation (router behaviour)

reach server directly. However, larger networks usually are connected via routers, so direct communication
is not always possible. On the other hand it is useful to have one server, which supports multiple links –
some connected directly and some remotely.

Very nice feature of the relays is that they appear as actual servers from the client’s point of view.
Therefore no special arrangement or configuration on the client side is required. On the other hand, from
the administrator point of view, it is much easier to manage one DHCPv6 server and deploy several relays
than manage several servers on remote links.

It is important to understand that relays not simply forward DHCPv6 messages. Each message
forwarded from client to the server is encapsulated. Also each message forwarded from server to a client
is decapsulated. Therefore additional server configuration is required to deal with encapsulated (i.e.
relayed) traffic.

To avoid confusion during reference to a specific link (i.e. eth0 on the relay may be different link than
eth0 on the server), each link must be referred to using its unique interface-id. For simplicity reasons,
Dibbler uses 4 bytes long identifiers, which are specified as numbers. It is essential to use the same
indentifier in the relay configuration as well as in the server, so both will refer to the same link using the
same number. See section 4.7.8 for example how to configure server and section 4.9.1 for corresponding
relay configuration.

In larger networks it is sometimes useful to connect multiple relays. Assuming there are 2 relays
connecting server and client. Such scenario is depicted on figure 6. Requests from client are received
by relay2, which encapsulates and sends them to relay1. Relay1 further encapsulates those messages
and sends them to the server. Since server receives double encapsulated messages, it must be properly
configured to support such traffic. See section 4.7.9 for details about server configuration and section
4.9.4 for example relays configuration.

3.3 Custom options

Dibbler is the DHCPv6 with support for a very large number of options. However, there are always
some new options that are not yet supported. Another case is that vendors sometimes want to develop and
validate their private options before formal standarisation process takes place. Starting with 0.8.0RC1,
both client and server are able to handle custom options. Even though author tries to implement support
for as many options as possible, there are always cases, when that is not enough. Some users may also
test out new ideas, before thet get standardized. Currently only several option layouts are supported,

Dibbler – a portable DHCPv6 User’s Guide 17

Figure 5: Relay deployment

but that list is going to be expanded. Server is able to support following extra formats: generic (defined
by hex string), IPv6 address, IPv6 address list and string (domain). To define those options, use the
following format:

#server.conf

iface "eth0" {

class {

pool 2001:db8:1::/64

}

option 145 - 01:02:a3:b4:c5:dd:ea

option 146 address 2001:db8:1::dead:beef

option 147 address-list 2001:db8:1::aaaa,2001:db8:1::bbbb

option 148 string "secretlair.example.org"

}

Similar list can be configured for client. However, client can ask for such custom options for testing
purposes only, as mechanism for handling those options once received is not yet implemented, as of
0.8.0RC1. Consider it experimental for the time being. Client can request for an option using ORO
option or even send the option in its messages.

#client.conf

iface "eth0" {

unicast 1

ia

Dibbler – a portable DHCPv6 User’s Guide 18

Figure 6: Cascade relays

option 145 - 01:02:a3:b4:c5:dd:ea

option 146 address 2001:db8:1::dead:beef

option 147 address-list 2001:db8:1::aaaa,2001:db8:1::bbbb

option 148 string "secretlair.example.org"

option 149 string request

option 150 address request

option 151 address-list request

A word of warning: There are no safety checks regarding option codes, so it is possible to transmit
already defined options using this feature. Use with caution!

3.4 Confirm

Client detects if previous client instance was not shutdown properly (due to power outage, client crash,
forceful shutdown or similar event). In such case, it reads existing address database and checks if assigned
addresses may still be valid. If that is so, it tries to confirm those addresses by using CONFIRM message.

If you want to provoke this kind of scenario on purpose, you can run dibbler-client normally, then
forcefully kill the procss (by sending kill -9 signal, or pressing ctrl-
under Linux). Make sure that you rerun client before address valid lifetime expires.

Currently, client does support only IAs in the CONFIRM.

3.5 Mobility

Client can also be compiled with support for link change detection. The intended use for this feature is
mobility. Client is able to detect when it moves to new link and react accordingly. Client sends CONFIRM

Dibbler – a portable DHCPv6 User’s Guide 19

message to verify that its currently held address is still usable on this new link.

3.6 Leasequery

Servers provide addresses, prefixes and other configuration options to the clients. Sometime adminis-
trators may want to obtain information regarding certain leases, e.g. who has been given a specific address
or what addresses have been assigned to a specific client. This mechanism is called Leasequery [15]. New
DHCPv6 participant called requestor has been defined. Its sole purpose is to send queries and receive
responses. Dibbler provides example implementation. To define a query, command line parameters are
used.

There are two types of queries: by address (”who leases this address?”) and by client identifier (”what
addresses has this client?”). To specify one of such types, -addr or duid command-line switches can be
used. It is also mandatory to specify (using -i IFACE), which interface should be used to transmit the
query.

Here is a complete list of all command-line switches:

-i IFACE – defines thru which interface should the query be sent

-addr ADDR – sets query type to query by address. Also defines address, which the query will be
about.

-duid DUID – sets query type to query by client indentifier. Also defines client intentifier.

-timeout SECS – specifies time, which requestor should wait for response.

-dstaddr ADDR – destination address of the lease query message. By default messages are sent to the
multicast address (ff02::1:2). To transmit query to an unicast addres, use this option.

Example query 1: Who has 2000::1 address?

dibbler-requestor -i eth0 -addr 2000::1

Example query 2: Which addresses are assigned to client with specific client identifier?

dibbler-requestor -i eth0 -duid 00:01:00:01:0e:8d:a2:d7:00:08:54:04:a3:24

3.7 Stateless vs stateful and IA, TA options

This section explains the difference between stateless and stateful configurations. IA and TA options
usage is also described.

Usually, normal stateful configuration based on non-temporary addresses should be used. If you don’t
know, what temporary addresses are, you don’t need them.

There are two kinds of configurations in DHCPv6 ([5], [10]):

stateful – it assumes that addresses (and possibly other parameters) are assigned to a client. To perform
this kind of configuration, four messages are exchanged: SOLICIT, ADVERTISE, REQUEST and
REPLY.

stateless – when only parameters are configured (without assigning addresses to a client). During
execution of this type of configuration, only two messages are exchanged: INF-REQUEST and
REPLY.

Dibbler – a portable DHCPv6 User’s Guide 20

During normal operation, client works in a stateful mode. If not instructed otherwise, it will request
one or more normal (i.e. non-temporary) address. It will use IA option (Identity Association for Non-
temporary Addresses, see [5] for details) to request and retrieve addresses. Since this is a default behavior,
it does not have to be mentioned in the client configuration file. Nevertheless, it can be provided:

client.conf

iface eth0 {

ia

option dns-server

}

In a specific circustances, client might be interested in obtaining only temporary addresses. Although
this is still a stateful mode, its configuration is sligtly different. There is a special option called TA
(Identity Association for Temporary Addresses, see [5] for details). This option will be used to request
and receive temporary addresses from the client. To force client to request temporary addresses instead
of permanent ones, ta keyword must be used in client.conf file. If this option is defined, only temporary
address will be requested. Keep in mind that temporary addresses are not renewed.

client.conf

iface eth0 {

ta

option dns-server

}

It is also possible to instruct client to work in a stateless mode. It will not ask for any type of addresses,
but will ask for specific non-adress related configuration parameters, e.g. DNS Servers information. This
can be achieved by using stateless keyword. Since this is a global parameter, it is not defined on any
interface, but as a global option.

client.conf

stateless

iface eth0

{

option dns-server

}

Some of the cases mentioned above can be used together. However, several combinations are illegal.
Here is a complete list:

none – When no option is specified, client will assume one IA with one address should be requested.
Client will send ia option (stateful autoconfiguration).

ia – Client will send ia option (stateful autoconfiguration).

ia,ta – When both options are specified, client will request for both - Non-temporary as well as Temporary
addresses (stateful autoconfiguration).

stateless – Client will request additional configration parameters only and will not ask for addresses
(stateless autoconfiguration).

stateless,ia – This combination is not allowed.

stateless,ta – This combination is not allowed.

stateless,ia,ta – This combination is not allowed.

Dibbler – a portable DHCPv6 User’s Guide 21

3.8 DNS Update

During normal operation, DHCPv6 client receives one or more IPv6 address(es) from DHCPv6 server.
If configured to do so, it can also receive information about DNS server addresses. As an additional
service, DNS Update can be performed. This feature, sometimes known as Dynamic DNS, keeps DNS
entries up to date. When client boots, it gets its fully qualified domain name and this name can be used
to reach this particular client by other nodes. Details of this mechanism is described in [14].

Note: In this section, we will assume that hostnames will be used from the example.com domain and
that addresses will be provided from the 2000::/64 pool.

Figure 7: DNS Update (performed by server)

There are two types of the DNS Updates. First is a so called forward resolving. It allows to change
a node’s name into its address, e.g. malcolm.example.com can be translated into 2000::123. Other kind
of record, which can be updated is a so called reverse resolving. It allows to obtain full name of a node
with know address, e.g. 2000::124 can be translated into zoe.example.com.

To configure this feature, following steps must be performed:

1. Configure DNS server. DNS server supporting IPv6 and dynamic updates must be configured. One
example of such server is a BIND 9.3. It is necessary to allow listening on the IPv6 sockets and
define that specific domain can be updated. See example below.

2. Configure Dibbler server to provide DNS server informations for clients. DNS Updates will be sent
to the first DNS server on the list of available servers.

3. Configure Dibbler server to work in stateful mode, i.e. that it can provide addresses for the clients.
This is a default mode, so unless configuration was altered, this step is already done. Make sure
that there is no ,,stateless” keyword in the server.conf file.

4. Define list of the available names in the server configuration file. Make sure to use fully qualified
domain names (e.g. malcolm.example.com), not the hostnames only.

5. Configure dibbler client to request for DNS Update. Use ,,option fqdn” to achieve this.

6. Server can be configured to execute

• both (AAAA and PTR) updates by itself

• execute PTR only by itself and let client execute AAAA update

• don’t perform any updates and let client perform AAAA update.

Dibbler – a portable DHCPv6 User’s Guide 22

Note that only server is allowed to perform PTR updates. After configuration, client and/or server
should log following line, which informs that Dynamic DNS Update was completed successfully.

As of 0.8.0, both Dibbler server and client are using TCP connection for DNS Updates. Connections
are established over IPv6. There is no support for IPv4 connections. Server uses first DNS server address
specified in dns-server option. It is possible to use differentiate between DNS addresses provided to
clients and the one used for DDNS. To override DNS updates to be performed to different address, use
the following command:

fqdn-ddns-address 2001:db8:1::1

Figure 8: DNS Update (performed by client)

3.8.1 Example BIND configuration

Below are example configuration files for the BIND 9.3. First is a relevant part of the /etc/bind/-
named.conf configuration file. Generally, support for IPv6 in BIND is enabled (listen-on-v6) and there
are two zones added: example.com (normal domain) and 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.2.ip6.arpa (reverse
mapping). Corresponding files are stored in example.com and rev-2000 files. For details about meaning
of those directives, please consult BIND 9 Administrator Reference Manual.

Note: Provided configuration is not safe from the security point of view. See next subsection for
details.

// part of the /etc/bind/named.conf configuration file

options {

listen-on-v6 { any; };

listen-on { any; };

// other global options here

// ...

};

zone "example.com" {

type master;

file "example.com";

allow-update { any; };

allow-transfer { any; };

Dibbler – a portable DHCPv6 User’s Guide 23

allow-query { any; };

// other example.com domain-specific

// options follow

// ...

};

zone "0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.2.ip6.arpa" {

type master;

file "rev-2000";

allow-update { any; };

allow-transfer { any; };

allow-query { any; };

// other 2000::/64 reverse domain related

// options follow

// ...

};

Below are examples of two files: forward and reverse zone. First example presents how to configure
normal domain. As an example there is entry provided for zoe.example.com host, which has 2000::123
address. Note that you do not have to manually configure such entries – dibbler will do this automatically.
It was merely provided as an example, what kind of mapping will be done in this zone.

;

$ORIGIN .

$TTL 86400 ; 1 day

example.com IN SOA v13.klub.com.pl. root.v13.klub.com.pl. (

129 ; serial

7200 ; refresh (2 hours)

3600 ; retry (1 hour)

604800 ; expire (1 week)

86400 ; minimum (1 day)

)

NS v13.klub.com.pl.

A 1.2.3.4

TXT "Fake domain used for Dibbler tests."

$ORIGIN example.com.

$TTL 7200 ; 2 hours

zoe AAAA 2000::123

Second example presents zone file for reverse mapping. It contains entries for a special zone called
0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.2.ip6.arpa. This zone represents 2000::/64 address space. As an example there
is a static entry, which maps address 2000::999 to a canonical name kaylee.example.com. Note that you do
not have to manually configure such entries – dibbler will do this automatically. It was merely provided
as an example, what kind of mapping will be done in this zone.

; rev-2000 example file

$ORIGIN .

$TTL 259200 ; 3 days

; this line below is split in two due to page with limitation

Dibbler – a portable DHCPv6 User’s Guide 24

0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.2.ip6.arpa IN

SOA 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.2.ip6.arpa. hostmaster.ep.net. (

; this line above is split in two due to page with limitation

200608268 ; serial

86400 ; refresh (1 day)

1800 ; retry (30 minutes)

172800 ; expire (2 days)

259200 ; minimum (3 days)

)

NS klub.com.pl.

$ORIGIN 0.2.ip6.arpa.

$TTL 86200 ; 23 hours 56 minutes 40 seconds

3.2.1 PTR picard.example.com.

; this line below is split in two due to page with limitation

9.9.9 PTR kaylee.example.com.

$ORIGIN 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.2.ip6.arpa.

; example entry: 2000::999 -> troi.example.com.

; this line below is split in two due to page with limitation

9.9.9.0.2.ip6.arpa

PTR troi.example.com.

; this line above is split in two due to page with limitation

Note: Due to page width limitation, if the example above, two lines were split.

3.8.2 Dynamic DNS Testing and tips

Proper configuration of the DNS Update mechanism is not an easy task. Therefore this section provides
description of several methods of testing and tuning BIND configuration. Please review following steps
before reporting issues to the author or on the mailing list.

• See example server and client configuration files described in a sections 4.5.7 and 4.7.10. Also note
that Dibbler distribution should be accompanied with several example configuration files. Some of
them include FQDN usage examples.

• Make sure that unix user, which runs BIND, is able to create and write file example.com.jnl. When
BIND is unable to create this journal file, it will fail to accept updates from dibbler and will report
failure. Check BIND log files, which are usually stored in the /var/log/ directory.

• Make sure that you have routing configured properly on a host, which will attempt to perform DNS
Update. Use ping6 command to verify that DNS server is reachable from this host.

• Make sure that your DNS server is configured properly. To do so, you might want to use nsupdate

tool. It is part of the BIND distribution, but it is sometimes distributed separated as part of
the dnsutils package. After executing nsupdate tool, specify address of the DNS server (server
command), specify update parameters (update command) and then type send. If nsupdate return
a command prompt, then the update was successful. Otherwise nsupdate will print DNS server’s
response, e.g. NOTAUTH of SRVFAIL. See below for examples of successful forward (AAAA record)
and reverse (PTR record) updates.

• After DNS Update is performed, DNS records can be verified using dig command line tool (a part of
the dnsutils package). Command syntax is: dig @(dns-server-address) name record-type. In

Dibbler – a portable DHCPv6 User’s Guide 25

the following example, this query checks for name jayne.example.com at a server located at 2000::1
address. Record type AAAA (standard record for resolving name into IPv6 address) is requested.
dig tool provides server’s response in the ANSWER SECTION:. See example log below.

• In example BIND configuration above, zone transfers, queries and updates are allowed from any-
where. To make this configuration more secure, it might be a good idea to allow updates only from
a certain range of addresses or even one (DHCPv6 server’s) address only.

To manually make AAAA record update, type:

nsupdate

>server 2000::1

>update add worf.example.com 7200 IN AAAA 2000::567

>send

To manually make PTR record update, type:

nsupdate

>server 2000::1

>update add

3.2.1.0.2.ip6.arpa.

86200 IN PTR picard.example.com.

>send

Note: Everything between ”update” and ”picard.example.com” must be typed in one line.
And here is an example dig session:

v13:/var# dig @2000::1 jayne.example.com AAAA

; <<>> DiG 9.3.2 <<>> @2000::1 jayne.example.com AAAA

; (1 server found)

;; global options: printcmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 33416

;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 2

;; QUESTION SECTION:

;jayne.example.com. IN AAAA

;; ANSWER SECTION:

jayne.example.com. 7200 IN AAAA 2001::e4

;; AUTHORITY SECTION:

example.com. 86400 IN NS v13.klub.com.pl.

;; Query time: 6 msec

;; SERVER: 2000::1#53(2000::1)

;; WHEN: Mon Jul 24 01:38:13 2006

;; MSG SIZE rcvd: 136

3.8.3 Accepting Unknown FQDNs

By default, server configured to support FQDN has a list of names that are to be provided to clients.
But there are use cases, when client uses its own name and sends it to the server. So it makes sense to

Dibbler – a portable DHCPv6 User’s Guide 26

sometimes allow client’s own domain names. Server does not know anything about such names, thus its
nickname ”Unknown FQDN”.

There are several actions that server can do, when unknown FQDN is received. To configure such
support for unknown FQDNs, accept-unknonwn-fqdn option can be defined on an interface. Depending
on its, value, it may bave domain name as a parameter. For example:

iface "eth0" {

assign addresses from this class

class {

pool 2000::/64

}

provide DNS server location to the clients

also server will use this address to perform DNS Update,

so it must be valid and DNS server must accept DNS Updates.

option dns-server 2000::1

provide their domain name

option domain example.com

provide fully qualified domain names for clients

note that first, second and third entry is reserved

for a specific address or a DUID

option fqdn 1 64

zebuline.example.com - 2000::1,

kael.example.com - 2000::2,

wash.example.com - 0x0001000043ce25b40013d4024bf5,

zoe.example.com,

malcolm.example.com,

kaylee.example.com,

jayne.example.com,

inara.example.com

specify what to do with client’s names that are not on the list

0 - reject

1 - send other name from allowed list

2 - accept any name client sends

3 - accept any name client sends, but append specified domain suffix

4 - ignore client’s hint, generate name based on his address, append domain name

accept-unknown-fqdn 4 foo.bar.pl

}

3.9 Introduction to client classification

It is possible to define more than one address class for a single interface. Normally, when a client
asks for an address, one of the classes is being chosen on a random basis. If not specified otherwise, all

Dibbler – a portable DHCPv6 User’s Guide 27

classes have equal probability of being chosen. However there are cases where an Administrator wants
to restrict access to a given pool or to have distinct ”client classes” associated to different address pools.
For example, Computer and IP-Telephone terminals can coexist in the same LAN ; but the Computer
must belong to given class pool meanwhile the IP-Telephone must belong to another pool.

In order to implement the Client Class Classification, you must first create the client class and then in
the class declaration, indicate which class to be allowed or denied. This point will be discussed in detail
in next sections.

3.9.1 Client class declaration

Each client class used for class / ta / pd addressing must be defined in the server configuration file at
global scope. A client-class declaration looks like this:

Client-class TelephoneClass{

match-if (client.vendor-spec.en == 1234567)

}

Where TelephoneClass denotes the name of the client class and the (client.vendor-spec.en == 1234567)
denotes the condition an incoming message shall match to belong to the Client-Class. The supported
operator and data will be discussed in next section.

3.9.2 Access control

Access control is based on a per pool basis. In the client-class declaration; you can deny or allow
the client class by using the keyword ”allow” or ”deny”. For example, following class accepts all clients
except those belonging to the client class ”TelephoneClass”:

class {

2000::/64

deny TelephoneClass

}

Another example. This class accepts only client belonging to the client class ”TelephoneClass”.

class {

2000::/64

allow TelephoneClass

}

The rule can also be applied to TA/PD declaration. Several ”allow” directives can be associated to a
given pool.

ta-class {

pool 2000::/64

deny TelephoneClass

}

pd-class {

pd-pool 2000::/80

pd-length 96

deny TelephoneClass

}

Dibbler – a portable DHCPv6 User’s Guide 28

3.9.3 Assigning clients to defined classes

Classifying operators are used for assigning client to a specific class. Currently, Dibbler supports the
following Operators for classifying clients:

Equal operator

Syntax : (Expr1 == Expr2)

Scope : global

Purpose : returns "true" if Expr1 equals Expr2

And Operator

Syntax : (Condition1 and Condition2)

Scope : global

Purpose : returns "true" if both Condition1 and Condition2 are "true"

Or operator

Syntax : (Condition1 or Condition2)

Scope : global

Purpose : returns "true" if either Condition1 or Condition2 is "true"

Contain Operator

Syntax : (String1 contain String2)

Scope : global

Purpose : returns "true" if String2 is a substring of String1

Substring Operator

Syntax substring (Expr1, index, length)

Scope : global

Purpose : returns the substring of the result of that evaluation

that starts index characters from the beginning, continuing for

length characters.

Dibbler accepts different data expressions – or variables – which reflect value of options found in the
packet to which the server is responding.

client.vendor-spec.en the enterprise number value of OptionVendorSpecific (OPTION VENDOR OPTS,
option value equals to 17 as per RFC3315)

client.vendor-spec.data the data of OptionVendorSpecific (OPTION VENDOR OPTS, option value
equals to 17 as per RFC3315)

client.vendor-class.en the enterprise number value of OptionVendorClass (OPTION VENDOR CLASS,
option value equal to 16 as per RFC3315)

client.vendor-class.data the data of OptionVendorClass (OPTION VENDOR CLASS, option value
equals to 16 as per RFC3315)

3.9.4 Examples of Client-Class Classifying

Example 1 :

Client-class CPEClass {

match-if (client.vendor-spec.data contain CPE)

}

Dibbler – a portable DHCPv6 User’s Guide 29

Client belongs to CPEClass if its request message contains the Vendor Specific option with the data field
including the substring ”CPE”.

Example 2 : Combination with AND operator

Client-class TelephoneClass {

match-if ((client.vendor-spec.en == 1234) and (client.vendor-spec.data contain CPE))

}

Example 3 : Combination with OR operator

Client-class TelephoneClass {

match-if ((client.vendor-spec.en == 1234) or (client.vendor-spec.data contain CPE))

}

3.10 Server address caching

Previous Dibbler versions assigned a random address from the available address pool, so the same
client received different address each time it asked for one. In the 0.5.0 release, new mechanism was
introduced to make sure that the same client gets the same address each time. It is called Server caching.

Below is the algorithm used by the server to assign an address to the client.

• if the client provided hint, it is valid (i.e. is part of the supported address pool) and not used, then
assign requested address.

• if the client provided hint, it is valid (i.e. is part of the supported address pool) but used, then
assign free address from the same pool.

• if the client provided hint, but it is not valid (i.e. is not part of the supported address pool, is
link-local or a multicast address), then ignore the hint completety.

• if the did not provide valid hint (or provided invalid one), try to assign address previously assigned
to this client (address caching)

• if this is the first time the client is seen, assign any address available.

3.11 XML files

During its execution, all dibbler components (client, server and relay) store its internal information
in the XML files. In Linux systems, they are stored in the /var/lib/dibbler directory. In Windows,
current directory (i.e. directory where exe files are located) is used instead. There are several xml files
generated. Since they are similar for each component, following list provides description for server only:

• server-CfgMgr.xml – Represents information read from a configuration file, e.g. available address
pool or DNS server configuration.

• server-IfaceMgr.xml – Represens detected interfaces in the operating system, as well as bound sockets
and similar information.

• server-AddrMgr.xml – This is database, which contains identity associations with associated ad-
dresses.

• server-cache.xml – Since caching is implemented by the server only, this file is only created by the
server. It contains information about previously assigned addresses.

Dibbler – a portable DHCPv6 User’s Guide 30

3.12 Authentication and Authorization

Implementation of authentication and authorization in Dibbler is loosely based on [18]. Mainly option
formats have been used, for interoperability purposes. Draft does not specify how to communicate with
home and foreign AAA servers (AAAH and AAAF) using Diameter or Radius protocol, so Dibbler uses
a different, simpler approach. Keys are stored locally in files. (see Fig. 3.12).

Figure 9: Simplified model of AAA

For each pair of client and server three files are needed. Client uses a file AAA-SPI, which contains 32-
bit AAA-SPI (AAA Security Parameter Index) — eight hexadecimal digits, to properly introduce himself
(authorize) to server. Also it needs file named AAA-key-AAASPI , which contains a key that is used to
generate authentication information in AAAAUTH and AUTH options. The AAA-key is any number of
arbitrary chosen bytes and is generated by administrator of DHCPv6 server. The server needs only one
file per client to properly communicate using authentication. The file is named AAA-key-AAASPI , where
AAASPI is the same value, that client has in AAA-SPI file. This file contains the same AAA-key, that client
has in AAA-key file. Dibbler searches for those files in AAA directory, which is /var/lib/dibbler/AAA

when running under Linux and current directory, when running under Windows.
Typical scenario of preparing a client and server to use authentication:

1. Administrator generates AAA-key-AAASPI file. AAASPI is an arbitrary chosen 32-bit number (as
described above). The file contains any AAA-key and can be administrator’s favorite poem or can
be simply generated using dd and /dev/urandom:

$ dd if=/dev/urandom of=AAA-key-b9a6452c bs=1 count=32

2. Administrator creates file AAA-SPI which contains previously chosen AAASPI. This file will be used
by the client only.

3. Administrator transfers AAA-SPI and AAA-key-AAASPI to the client, using some secure method (e.g.
mail+PGP, scp, https) to avoid sniffing the key by a potential attacker.

4. Client: User stores AAA-SPI and AAA-key-AAASPI in AAA directory.

5. Server: Administrator stores AAA-key-AAASPI in AAA directory.

For example, configuration files can look like this:

Dibbler – a portable DHCPv6 User’s Guide 31

• Server’s AAA-key-b9a6452c and client’s AAA-key (32 bytes):

ma8s9849pujhaw09y4h[80pashydp80f

• Client’s AAA-SPI (8 bytes):

b9a6452c

When configuration files are prepared and stored in client’s and server’s AAA directory you are ready
to use authentication. For detailed description of possible options see 4.4.5. For quick start:

• set “auth-enabled true” in client.conf

• set “auth-method digest-hmac-sha256” in server.conf

See section 4.5.14 for example client configuration and 4.7.17 for server configuration.

3.13 Exceptions: per client configuration

All configuration parameters (except FQDN) are the same for all clients, e.g. all clients will receive
the same domain name and the same DNS servers information.

However, it is sometimes useful to provide some clients with different configuration parameters. For
example computers from the accouting department in a corporate network may be configured to be in
a different subdomain. Is is possible to specify that for particular client different configuration options
should be provided. Each client is identified by its DUID. This mechanism is called per client configuration,
but it is sometimes referred to as exceptions.

Note: This mechanism does not apply to prefix granting. Prefix delegation reservation will be imple-
mented at a later date. If you need this feature, please contact author.

See section 4.7.12 for server configuration examples.

3.14 Vendor specific information

Dibbler supports vendor specific information options. As the name suggests, that option is specific to
a particular vendor. To be able to support any vendor in a flexible manner, values are specified in a hex
format in server.conf. For example:

option vendor-spec 1234-0x00002fedc

When client asks for a vendor-specific info, server will send vendor-specific info option with enterprise
number set to 1234 and value option-data will be 00002fedc.

Although uncommon, it is also possible to specify multiple vendor options. Another server.conf

example:

option vendor-spec 1234-0x00002fedc,5678-0x0002aaaa

Server algorithm for choosing, which vendor option should be sent, works as follows:

• When client requests for a speficic vendor (i.e. sends vendor-spec info option with vendor field set),
it will receive option for that specific vendor (i.e. requested 1234, got 1234).

• When client requests any vendor (i.e. sends only option request option with vendor-spec mentioned),
it will receive first vendor-spec info option from the list (i.e. 5678/0002aaaa).

• When client requests for not supported vendor (i.e. 11111), it will receive first vendor-spec option
from the list (i.e. 5678/0002aaaa).

Dibbler – a portable DHCPv6 User’s Guide 32

It is possible to configure Dibbler client to ask for vendor-specific info. Granted value will not be
used, so from the client’s point of view this feature may be used as testing tool for the server. Client can
request vendor-specific information option in one of the following ways:

option vendor-spec – Only option request option will be sent with vendor-spec info option mentioned.

option vendor-spec 1234 – option request option will be sent with vendor-spec info option mentioned,
but also vendor-spec info option with enterprise number set to 1234 will be sent.

option vendor-spec 1234 0x0a0b0c0d – option request option will be sent with vendor-spec info op-
tion mentioned, but also vendor-spec info option with enterprise number set to 1234 and option-data
will be sent.

Although that is almost never needed, it is possible to configure client to request multiple vendor-
specific options at the same time. That is also supported by the server. See 4.5.9 for examples.

However, if client sends requests for multiple vendor-specific options, which are not supported by the
server, for each sent option, server will assign one default vendor-spec option.

See 4.5.9 for client example and 4.7.11 for server examples.

3.15 Not connected interfaces (inactive-mode)

During normal startup, client tries to bind all interfaces defined in a configuration file. If such attempt
fails, client reports an error and gives up. Usually that is best action. However, in some cases it is possible
that interface is not ready yet, e.g. WLAN interface did not complete association. Dibbler attempt to
detect link-local addresses, bind any sockets or initiate any kind of communication will fail. To work
around this disadvantage, a new mode has been introduced in the 0.6.0RC4 version. It is possible to
modify client behavior, so it will accept downed and not running interfaces. To do so, inactive-mode
keyword must be added to client.conf file. In this mode, client will accept inactive interfaces, will add
them to inactive list and will periodically monitor its state. When the interface finally goes on-line, client
will try to configure it.

To test this mode, you can simulate deassociation using normal Ethernet interface. Issue following
commands:

• Bring down your interface (e.g. ifconfig eth0 down)

• edit client.conf to enable inactive-mode

• execute client: dibbler-client run

• client will print information related to not ready interface, and will periodically (once in 3 seconds)
check interface state.

• in a separate console, issue ifconfig eth0 up to bring the interface up.

• dibbler-client will detect this and will initiate normal configuration process.

In the 0.6.1 version, similar feature has been introduced on the server side. See sections 4.5.13 and
4.7.15 for configuration examples.

Dibbler – a portable DHCPv6 User’s Guide 33

3.16 Parameters not supported by server (insist-mode)

Client can be instructed to obtain several configuration options, for example DNS server configuration
or domain name. It is possible that server will not provide all requested options. Older versions of the
dibbler client had been very aggressive in such case. It tried very hard to obtain such options. To do so,
it did send INF-REQUEST to obtain such option. It is possible that some other DHCPv6 servers will
receive this message and will reply with valid configuration parameters. This behavior has changed in the
0.6.0RC4 release. Right now when client does not receive all requested options, it will complain, but will
take no action. To enable old behavior, so called insist-mode has been added. To enable this mode, add
insist-mode at the global section of the client.conf file. Example configuration file is provided in the
4.5.12.

3.17 Different DUID types

There are 3 different types of the DUID (DHCP Unique Identifier):

• type 1 (link-layer + time) – this DUID is based on Link-layer address and a current timestamp.
According to spec [5], that is a default type.

• type 2 (enterprise number) – this DUID is based on the Private Enterprise Number assigned to
larger companies. Each vendor should maintain its own space of unique identifiers.

• type 3 (link-layer) – this DUID is based on link-layer address only.

According to spec [5], it is recommended to use link-layer + time, if possible. That DUID type
provides most uniqueness. It has one major drawback – it is impossible to know DUID before it is actually
generated. That poses significant disadvantage to sysadmins, who want to specify different configuration
for each client. In such cases, it is recommended to switch to link-layer only (type 3) DUIDs.

During first executing dibbler-client will generate its DUID and store it in client-duid file on disk.
During next startup DUID will be read from the file, not generated.

It is possible to specify, what DUID format should be used. It is worth noting that such definition is
taken into consideration during DUID generation only, i.e. during first client execution. To specify DUID
type, put only one of the following lines in the client.conf file:

uncommend only ONE of the lines below

duid-type duid-llt

#duid-type duid-en 1234 0x56789abcde

#duid-type duid-ll

iface eth0 {

ia

option dns-server

}

When using link-layer+time or link-layer DUID types, dibbler will autodetect addresses. To generate
enterprise number-based DUID, specific data must be provided: enterprise-number (a 32-bit integer,
1234 in the example above) and a enterprise-specific indentifier of arbitrary length (56:78:9a:bc:de in the
example above).

3.18 Debugging/compatibility features

During interoperability test session, it has been discovered that sometimes various different implemen-
tations of the DHCPv6 protocol has problem to interact with each other. As the protocol itself does not

Dibbler – a portable DHCPv6 User’s Guide 34

specify all aspects and details, some things can ba done differently and there is no only one ,,proper way”.
It also happens that some implementations may have problems with different than its authors expected
behaviors. To allow better interoperation between such implementation, dibbler has some features, which
cause different behaviors. This could result in a successful operation with other servers, clients and relays.

Normal users don’t have to worry about those options, unless they are using different servers, clients
and relays. Those options also may be useful for other vendors, who want to test their implementations.
Therefore those options can be perceived as a debugging or testing features.

3.18.1 Interface-id option

During message relaying (done by relays), options can be placed in the RELAY-FORW message is
arbitrary order. In general, there are two options used: interface-id option and relay-message option.
The former defines interface identifier, which the original data has been received from, while the later
contains the whole original message. When several relays are used, such message-in-option encapsulation
can occur multiple times.

It is possible to instruct relay to store interface-id before relay-message option or after. There is
also possibility to instruct server to omit the interface-id option altogether, but since this violates [5],
it should not be used. In general, this configuration parameter is only useful when dealing with buggy
relays, which can’t handle all option orders properly. Consider this parameter a debugging feature.

Similar parameter is defined for the server. Server uses it during RELAY-REPL generation.
See description of the interface-id-order parameters in Server configuation (section 4.6) and Relay

configuration (section 4.8).

3.18.2 Non-empty IA NA option

When client is interested in receiving an address, it sends IA NA option. In this option it may (but
don’t have to) include addresses (using IAADDR suboption) as hints for the server.

It has been detected that some servers does not support properly (perfectly valid) empty IA NA
options. To work around this problem, dibbler-client can be instructed to include two IAADDR in the
IA NA option. Here is minimal example config, which achieves that:

iface eth0 {

ia {

address

address

}

}

3.18.3 Providing address/prefix hints

Dibbler client can be instructed to send specific addresses or prefixes in its SOLICIT messages. This
can be achieved by using following syntax:

client.conf - request specific address/prefix

iface eth0 {

ia {

address { 2001:db8:dead:beef:: }

}

pd {

prefix 2001:db8:aaaa::/64

}

Dibbler – a portable DHCPv6 User’s Guide 35

}

Be default, client will use those addresses in SOLICIT message only. When transmitting REQUEST
message, it will copy proposals from ADVERTISE message, received from a server. To force client to use
those specified addresses and/or prefixes also in REQUEST, please use insist-mode directive.

3.19 Experimental features

This section contains experimental features. Besides serving as a general purpose DHCPv6 solution,
dibbler is also used as a research tool for new ideas. 6 Normal users are recommended NOT to use any
of those features. Advanced users should take extra caution. Also be aware that those options may not
work as expected, may be incomplete and not documented properly. You have been warned.

Since those mechanisms are non-standard, they are disabled by default. To enable them, ,,experimen-
tal” keyword must be placed in the client.conf or server.conf files.

3.19.1 Address Parameters

Note: This feature is experimental, i.e. it is not described by any RFC or even internet
draft. Don’t use it, unless you exactly know what you are doing.

There is ongoing process to register and publish internet draft, which describes this operation. Latest
versions of this draft will be availabe at http://klub.com.pl/dhcpv6/doc/.

RFC3315 ([5]) defines means of allocating IPv6 addresses to all interested clients. Clients are able to
obtains IPv6 addresses and other configuration parameters from the servers. Unfortunately, client after
obtaining an address, are not able to communicate each other due to missing prefix information. That
property of the DHCPv6 procotol is sometimes perceived as a major disadvantage. To overcome this
deficiency, an extension to the protocol has been proposed.

It is possible to attach additional option conveyed in normal IAADDR option. That additional option,
called ADDRPARAMS option, contains additional information related to that address. To maintain
backward compatibility, server does not send such option by default, even when configured to support it.
To make server send this option, client must explicitly ask for it.

Below are example configuration files for server and client. Note that since that is an non-standard fea-
ture, user must explicitly allow experimental options before configuring it (thus ,,experimental” keyword
is required).

Example client.conf configuration file:

#client.conf

log-mode short

log-level 8

iface "eth0" {

ia {

addr-params

}

}

Example server.conf configuration file:

#server.conf

log-level 8

6This was particularly true during my Ph. D. research.

http://klub.com.pl/dhcpv6/doc/

Dibbler – a portable DHCPv6 User’s Guide 36

experimental

log-mode short

iface eth0 {

t1 60

t2 96

prefered-lifetime 120

valid-lifetime 180

class {

addr-params 80

pool 2001:458:ff01:ff03::/80

}

}

3.19.2 External scripts

Note: Support for external scripts is going to be significantly improved ater 0.8.0 release.
Dibbler-client is able to receive addresses, prefixes and numerous additional options. It will do its

best to set up those parameters in the system. However, the need for some extra processing may arise.
The most elegant solution is to call external script every time the configuration changes. Dibbler client
may be configured to call external script every time REPLY is received for REQUEST (new parameters
added), RENEW (parameters were updated) or RELEASE (parameters were deleted).

Script called ./notify will be executed from working directory (this is /var/lib/dibbler in Posix-
like system and installation directory under Windows). Script will be called with following parameters:
address, prefix, prefixLength, remoteEndpoint (if you don’t know what that is, you can safely ignore
this parameter) and action (”add”, ”update” or ”delete”). For example, if client leased 2000::1 address,
3000::/64 prefix, 4000::1 tunnel endpoint and tunnel mode 2, script execution will look like this:

./notify 2000::1 3000:: 64 4000::1 2 add

To enable script execution, notify-scripts global option must be added to client.conf file. For
example:

client.conf

notify-scripts

iface eth0 {

ia

}

Note that only first address and first prefix will be passed. If specific parameter is not configured,
:: or 0 will be used instead. If you want to be notified about more than one address, you must parse
client-AddrMgr.xml and client-IfacMgr.xml files.

3.19.3 Remote Autoconfiguration

Every time a node attaches to a new link, it must renew or obtain new address and parameters, using
DHCPv6 protocol (namely CONFIRM or SOLICIT messages. In case of mobile nodes, it is beneficial
to obtain address and other configuration parameters remotely, before actually attaching to destination

Dibbler – a portable DHCPv6 User’s Guide 37

link. This extension provides experimental support for such operation. Details of this mechanism are
thoroughly discussed in [19, 24, 20, 21].

The idea is that once client attaches to its current location, normal configuration procedure is initiated
(SOLICIT, ADVERTISE, REQUEST and REPLY). However, besides requesting the usual options, client
also asks for NEIGHBORS option. Server provides that option that contains list of available DHCPv6
servers at neighboring networks.

Once client gains that information, it then initiates remote autoconfiguration process, i.e. it sends
SOLICIT message to each of the newly discovered neighbors, requesting single IPv6 address. Servers
respond remotely, using REPLY message. Once this exchange is completed, client knows its new IPv6
address for each of the potential handover targets. What is especially important is that client obtains that
knowledge, while still being connected to old location. It may leverage that knowledge, e.g. to update
his correspondent nodes in advance.

As Dibbler client is not a mobility software itself, it has to communicate with Mobile IPv6 stack
somehow. Therefore it triggers ./remote-autoconf script every time remote autoconfiguration is concluded.

Note that to support this scenario, both client and all participating servers must have unicast and
rapid-commit support enabled.

Following series of server.conf files demonstrate, how 3 servers can be configured to incorm client about
their 2 neighbors.

#server.conf for server1.

log-level 8

log-mode short

preference 2

experimental

iface "eth0" {

t1 1800

class {

pool 2001:db8:1111::/64

}

rapid-commit 1

unicast 2001:db8:1111::f

option neighbors 2001:db8:2222::f,2001:db8:3333::f

}

#server.conf for server2

log-level 8

log-mode short

preference 1

experimental

iface "eth1" {

unicast 2001:db8:2222::f

rapid-commit 1

Dibbler – a portable DHCPv6 User’s Guide 38

class {

pool 2001:db8:2222::/64

}

option neighbors 2001:db8:1111::f,2001:db8:3333::f

}

log-level 8

preference 0

experimental

iface "eth1" {

unicast 2001:db8:3333::f

rapid-commit 1

class {

pool 2001:db8:3333::/64

}

option dns-server 2001:db8:3333::f

option neighbors 2001:db8:1111::f,2001:db8:2222::f

}

Client also needs to have enabled number of features. Following config file may serve as an example:

log-mode short

log-level 8

experimental

remote-autoconf

iface "eth0" {

ia

unicast 1

}

3.20 Obsoleted experimental features

This subsection describes experimental features that are not supported anymore. This list is provided
for historical reasons. It may be useful for someone to ease tracking of features removal, e.g. to get the
latest version that still has support for something.

3.20.1 Mapping prefix

Mapping prefix was an extension that altered client’s behavior when delegated prefix is received.
Instead of considering it as a prefix that should be distributed on other interfaces, it is used as a map-
ping prefix. Normal prefix processing is supressed and external script is executed: mappingprefixadd or
mappingprefixdel. That script must be present in the working directory (that would be /var/lib/dibbler
under Linux or current directory (Windows). This feature was removed in 0.8.0RC1.

Dibbler – a portable DHCPv6 User’s Guide 39

3.20.2 Tunnel mode

As support for DS-Lite [22] support was added in 0.8.0RC1, the old support for configuring tunnels
was retired. That old, removed configuration worked as follows:

In some scenarios, dibbler may be used for router configuration. IPv6 routers may need some extra
information for tunnel creation. Dibbler provided support for conveying such parameters. As routers
may use different tunneling schemes, there was also a special option that is used to convey the tunneling
mode. It was possible to instruct server server to send tunnel endpoint address, using vendor-specific
option with customisable vendor-id field. Following tunnel modes were supported:

• 0 – don’t create tunnel at all

• 1 – use IPv4-to-IPv6 NAT

• 2 – create IPv4-over-IPv6 tunnel

Dibbler – a portable DHCPv6 User’s Guide 40

4 Configuration files

This section describes Dibbler server, relay and client configuration. Square brackets denotes optional
values: mandatory [optional]. Alternative is marked as |. A | B means A or B. Parsers are case-insensitive,
so Iface, IfAcE, iface and IFACE mean the same. This does not apply to interface names. eth0 and ETH0
are dwo diffrent interfaces.

4.1 Data types

Config file parsing is token-based. Token can be considered a keyword or a specific phrase. Here’s list
of tokens used:

IPv6 address – IPv6 address, e.g. 2000:db81::dead:beef

32-bit decimal integer – string containing only numbers, e.g. 12345

string – string of arbitrary characters enclosed in single or double quotes, e.g. ’this is a string’. If string
contains only a-z, A-Z and 0-9 characters, quotes can be omited, e.g. beeblebrox

DUID identifier – hex number starting with 0x, e.g. 0x12abcd. In Dibbler version 0.8.0RC1, another
format was introduced: 2 hex digits separated by comma, e.g. 12:aa:bb:cc:d5. As this format
may in some cases be confused with IPv6 address, the old format (starting with 0x) remains to be
supported.

IPv6 address list – IPv6 addresses separated with commas, e.g. 2000::123, 2000::456

DUID list – DUIDs separated with commas, e.g. 0x0123456,0x0789abcd

string list – strings separated with comas, e.g. tealc,jackson,carter,oneill

boolean – YES, NO, TRUE, FALSE, 0 or 1. Each of them can be used, when user must enable or
disable specific option.

4.2 Scopes

There are four scopes, in which options can be specified: global, inteface, IA and address. Every
option is specific for one scope. Each option is only applied to a scope and all subscopes in which it is
defined. For example, T1 is defined for IA scope. However, it can be also used in more common scopes.
In this case – in interface or global. Defining T1 in interface scope means: ,,for this interface the default
T1 value is ...”. The same applies to global scope. Options can be used multiple times. In that case value
defined later is used.

Global scope is the largest. It covers the whole config file and applies to all intefaces, IAs, and
addresses, unless some lower scope options override it. Next comes inteface scope. Options defined there
are inteface-specific and apply to this interface, all IAs in this interface and addresses in those IAs. Next
is IA scope. Options defined there are IA-specific and apply to this IA and to addresses it contains. Least
significant scope is address.

4.3 Comments

Comments are allowed in configuration files. All common comment styles are supported:

• C++ style one-line comments: // this is comment

• C style multi-line comments: /* this is multiline comment */

• bash style one-line comments: # this is one-line comment

Dibbler – a portable DHCPv6 User’s Guide 41

4.4 Client configuration file

Client configuration file should be named client.conf. It should be placed in the /etc/dibbler/

directory (Linux system) or in the current directory (Windows systems). After successful startup, old
version of this file is stored as client.conf-old. One of design requirements for client was ,,out of the
box” usage. To achieve this, simply use empty client.conf file. Client will try to get one address for
each up and running interface 7.

4.4.1 Interface declaration

Each system interface, which should be configured, must be mentioned in the configureation file.
Interfaces can be declared with this syntax:

iface interface-name

{

interface-options

IA-options

address-options

}

or

iface interface-number

{

interface-options

IA-options

address-options

}

In the latter case, interface-number denotes interface number. It can be extracted from ,,ip l” (Linux)
or ,,ipv6 if” (Windows). interface-name is an interface name. Name of the interface does not have to
be enclosed in single or double quotes. It is necessary only in Windows systems, where interface names
sometimes contain spaces, e.g. ”local network connection”. Interface scoped options can be used here.
IA-scoped as well as address scoped options can also be used. They will be treated as a default values for
future definitions of the IA and address instantations.

4.4.2 IA declaration

IA is an acronym for Identity Association. It is a logical entity representing address or addresses used
to perform some functions. IA-options can be defined, e.g. T1. IPv6 addresses can be defined here. All
those values will be used as hints for a server. Almost always, each DHCPv6 client will have exactly one
IA on each interface. IA is declared using following syntax:

ia

{

IA-options

address-options

address-declaration

}

7Exactly: Client tries to configure each up, multicast-capable and running interface, which has link address at least 6
bytes long. So it will not configure tunnels (which usually have IPv4 address (4bytes long) as their link address. It should
configure all Ethernet and 802.11 interfaces. The latter was not tested by author due to lack of access to 802.11 equipment.

Dibbler – a portable DHCPv6 User’s Guide 42

It is also possible to define multiple IA at once. To do so, following syntax might be used:

ia number

{

IA-options

address-options

}

Number is an optional number, which describes how many such IAs should be requested. Number is
optional. If it is not specified, 1 is used. If this number is not equal 1, then address options are not
allowed. That could come in handy when someone need serveral IAs with the same parameters. If IA
contains no addresses, client assumes that one address should be configured. IA scoped as well as address
options can be defined here. IA scoped options will be applied directly, while address scoped options will
be used as default values for all addresses that will be defined in this IA.

4.4.3 Address declaration

When IA is defined, it is sometimes useful to define its address. Its value will be used as a hint for
the server. Address is declared in the following way:

address number

{

address-options

IPv6-address

}

where number denotes how many addresses with those values should be requested. If it is diffrent than
1, then IPv6 address options are not allowed. Only address scoped options can be used here.

4.4.4 Standard options

So called standard options are defined by the base DHCPv6 specification, a so called RFC 3315
document [5]. Those options are called standard, because all DHCPv6 implementations, should properly
handle them. Standard options are declared in the following way:

OptionName option-value

Every option has a scope it can be used in, default value and sometimes allowed range.

work-dir – (scope: global, type: string, default: .) Defines working directory.

log-level – (scope: global, type: integer, default: 7) Defines verbose level of the log messages. The valid
range if from 1 (Emergency) to 8 (Debug). The higher the logging level is set, the more messages
dibbler will print.

log-name – (scope: global, type: string, default: Client). Defines name, which should be used during
logging.

log-mode – (scope: global, type: short, full, precise or syslog default value: full) Defines logging mode.
In the default, full mode, name, date and time in the h:m:s format will be printed. In short mode,
only minutes and seconds will be printed (this mode is useful on terminals with limited width).
Recently added precise mode logs information with seconds and microsecond precision. It is a
useful for finding bottlenecks in the DHCPv6 autoconfiguration process. Syslog works under Linux
only and allows default POSIX logging functions.

Dibbler – a portable DHCPv6 User’s Guide 43

log-colors – (scope: global, type: boolean, default: off). Defines if logs printed to console should use
colors. That feature is used to enhance logs readability. As it makes the log files messy on systems
that do not support colors, it is disabled by default.

strict-rfc-no-routing – (scope: global, type: none, default: not defined). During normal operation,
DHCPv6 client should add IPv6 address only, without configuring routing, because this should be
done with other means, i.e. router advertisements [2]. However, this behavior is confusing and
lots of users complained about it, so since the 0.5.0-RC1 release, this has been changed in dibbler.
Right now when dibbler client configures address, it also configures routing, so every host is able to
communicate with other hosts, which have obtained address from the same server. If you don’t like
this behavior, you might want to use this option.

scripts-dir – (scope: global, type: string, default: system dependent). When dibbler client receives
some options it normally sets them up in the system. However, instead of setting up all parameters
directly, dibbler client can execute external scripts. Those scripts will be executed when particular
option is received. By default, those scripts can be stored in scripts/ for Windows, or /var/lib/dib-
bler/scripts for Linux. Using scripts-dir directive it is possible to define other location of the scripts.
Take note that directory should be defined in single or double quotes. (” sign).

anonymous-inf-request – (scope: global, type: present or absent, default: absent). When running in
a stateless mode, client does not ask for addresses or prefixes, but rather requests some general
options. By default, it sends its client identifier (DUID) to the server. However, it is possible to
omit this identifier, so the INF-REQUEST messages will be anonymous. This global option causes
client to act in such anonymous way.

inactive-mode – (scope: global, type: present or absent, default: absent). Normally (with inactive-
mode disable) client tries to bind all interfaces defined in configuration file. If such attempt fails,
client reports an error and gives up. In some cases it is possible that interface is not ready yet, e.g.
WLAN interface did not complete association. It is possible to modify client behavior, so it will
accept downed and not running interfaces. To do so, inactive-mode must be enabled. In this mode,
client will accept inactive interfaces, will add them to inactive list and will periodically monitor its
state. When the interface finally goes on-line, client will try to configure it. See section 3.15 for
details.

insist-mode – (scope: global, type: present or absent, default: absent). Client can be instructed to
obtain several configuration options, like DNS server configuration or domain name. It is possible
that server will not provide all requested options. Older versions of the dibbler client had been
very aggressive in such case. It tried very hard to obtain such options. To do so, it did send INF-
REQUEST to obtain such option. This behavior has changed. Right now when client does not
receive all requested options, it will complain, but will take no action. To enable old behavior, so
called insist-mode has been added. See section 3.16 for details.

duid-type – (scope: global, type: DUID-LLT, DUID-LL or DUID-EN, default: DUID-LLT). This pa-
rameter defines, what type of DUID should be generated if there is no DUID already present. If
there is a file containing DUID, this directive has no effect. DUID-LLT means that DUID will be
based on link layer address as well as time. DUID-LL means that only link layer address will be
used. The last value – DUID-EN – Enterprise Number-based generation has a slightly different
syntax: duid-type duid-en enterprise-number enterprise-id. For example: duid-type duid-en 1234
0x6789abcd means that enterprise number is set to 1234 and unique number from that company’s
pool is 67:89:ab:cd (hexadecimal value of arbitrary length). See section 3.17 for details.

option fqdn-s – (scope: global, type: boolean, default: 1). The S bit is used in FQDN option. It is

Dibbler – a portable DHCPv6 User’s Guide 44

used to negotiate, which side (server or client) wants to perform DNS Update procedure. See [14]
for details. In general, if you don’t want that this option does, you don’t want to modify this.

rapid-commit – (scope: interface, type: boolean, default: 0). This option allows rapid commit proce-
dure to be performed. Note that enabling rapid commit on the client side is not enough. server
must be configured to allow rapid commit, too.

unicast – (scope: interface, type: boolean, default: 0). This option specifies if client should request
unicast communication from the server. If server is configured to allow it, it will add unicast option
to its replies. It will allow client to communicate with server via unicast addresses instead of usual
multicast.

prefered-servers – (scope: interface, type: address or duid list, default: empty). This list defines, which
servers are prefered. When client sends SOLICIT message, all servers available in the local network
will respond. When client receives multiple ADVERTISE messages, it will choose those sent by
servers mentioned on the perfered-server list.

reject-servers – (scope: interface, type: address or duid list, default: empty) This list defines which
server must be ignored. It has negative meaning to the prefered-servers list.

vendor-spec – (scope: interface, type: integer-hexstring, default: empty). This option allow requesting
for a vendor specific configuration option. It does not any good in itself as there are no dibbler-
specific options to configure. It can be, however, used to test some other DHCPv6 server implemen-
tations. In short words: if you don’t know what that is, you don’t need it.

T1 – (scope: IA, type: integer: default: 232 − 1). This value defines after what time client should start
renew process. This is only a hint for the server. Actual value will be provided by the server.

T2 – (scope: IA, type: integer, default:232 − 1). This value defines after what time client will start
emergency rebind procedure if renew process fails. This is only a hint for the server. Actual value
will be provided by the server.

valid-lifetime – (scope:address, type: integer, default:232 − 1) This parameter defines valid lifetime of
an address. It will be used as a hint for a server, when the client will send requests.

prefered-lifetime – (scope:address, type: integer, default:232 − 1) This parameter defines prefered life-
time of an address. It will be used as a hint for a server, when there client will send requests.

4.4.5 Extension options

Extension options are the options specified in external drafts and RFC documents, but not in the base
spec [5]. To easily distinguish if an option is part of the base standard or one of the multiple extensions,
option keyword was added in the extension options declaration. Therfore extension options are declared
as follows:

option option-name

or

option option-name option-value

where option-name is name of the options. First approach instructs dibbler client to just ask for this
particular option. Second approach includes requested values. When sent by the client, server will use
those values as hints during those options assignment. Since those options are defined per interface, thus
every extension option has an interface scope, i.e. it is defined once per interface. As for the 0.8.0 release,
currently supported options are:

Dibbler – a portable DHCPv6 User’s Guide 45

dns-server – (scope: interface, type: address list, default: none). This option conveys information about
DNS servers available. After retriving this information, client will be able to resolve domain names
into IP (both IPv4 and IPv6) addresses. Without setting up DNS servers, host’s network capability
is greatly reduced, as user can’t use domain names (e.g. http://wp.pl/), but must use IP addresses
directly (e.g. http://212.77.100.101/ or http://2001:db8:1:1234::456/). Defined in [7].

domain – (scope: interface, type: domain list, default: none). This option is used for retriving do-
main or domains names, which the client is connected in. For example, if client’s hostname is
alice.mylab.example.com and it wants to contact bob.mylab.example.com it can simply refer
to it as bob. Without domain name configured, it would have to use full domain name. After
successful configuration, this useful shortcut is being used by all services available: web browsing,
mail sending, news reading etc. Defined in [7].

ntp-server – (scope: interface, type: address list, default: none). This option defines information about
available NTP servers. Network Time Protocol [1] is a protocol used for time synchronisation, so
all hosts in the network has the same proper time set. Defined in [13].

time-zone – (scope: interface, type: timezone, default: none). It is possible to retrieve timezone from
the server. If client is interested in this information, it should ask for this option. Note that this
option is considered obsolete as it is mentioned in draft version only [17]. Work on this draft seems
to be abandoned as similar functionality is provided in now standard [13].

sip-server – (scope: interface, type: address list, default: none). Session Initiation Protocol [4] is an
control protocol for creating, modifying, and terminating sessions with one or more participants.
These sessions include Internet telephone calls, multimedia distribution, and multimedia conferences.
Its most common usage is VoIP. Format of this option is defined in [6].

sip-domain – (scope: interface, type: domain list, default: none). It is possible to define domain names
for Session Initiation Protocol [4]. Configuration of this parameter will ease usage of domain names
in the SIP protocol. Format of this option is defined in [6].

nis-server – (scope: interface, type: address list, default: none). Network Information Service (NIS) is
a Unix-based system designed to use common login and user information on multiple systems, e.g.
universities, where students can log on to ther accounts from any host. To use this functionality,
a host needs information about NIS server’s address. This can be retrieved with this option. Its
format is defined in [11].

nis-domain – (scope: interface, type: domain list, default: none). Network Information Service (NIS)
can albo specify domain names. It can be configured with this option. It is defined in [11].

nis+-server – (scope: interface, type: address list, default: none). Network Information Service Plus
(NIS+) is an improved version of the NIS protocol. This option is defined in [11].

nis+-domain – (scope: interface, type: domain list, default: none). Similar to nis-domain, it defines
domains for NIS+. This option is defined in [11].

lifetime – (scope: interface, type: boolean, default: no). Base spec of the DHCPv6 protocol does offers
way of refreshing addresses only, but not the options. Lifetime defines, how often client would like
to renew all its options. By default client will not send such option, but it will accept it and act
accordingly if the server sends it on its own. Format of this option is defined in [16].

aftr – (scope: interface, type: FQDN). In Dual-Stack Lite networks, client may want to configure DS-
Lite tunnel. Client may want to obtain information about AFTR (a remote tunnel endpoint). This
option conveys fully qualified domain name. It is defined in defined in [22].

Dibbler – a portable DHCPv6 User’s Guide 46

auth-enabled – (scope: global, type: boolean, default: no). This option enables authentication and
authorization. When set to true, server support must also be enabled, otherwise all messages will
be dropped.

auth-accept-methods – (scope: global, type: string, default: empty). Comma separated list of au-
thentication methods that client will accept from server. If this list is empty, any method will be
accepted. Possible values are:

• none

• digest plain

• digest hmac md5

• digest hmac sha1

• digest hmac sha224

• digest hmac sha256

• digest hmac sha384

• digest hmac sha512

Note that timezone format is described in file draft-ietf-dhc-dhcpv6-opt-tz-00.txt and domain
format is described in RFC 3646. After receiving options values from a server, client stores values of those
options in separate files in the working directory (/var/lib/dibbler in Linux and current directory in
Windows). File names start with the option word, e.g. option-dns-server. Several options are also
processed and set up in the system. Options supported in Linux and Windows environments are presented
in the table below.

Option Linux WinXP/2003 WinNT/2000

dns-server system, file system, file system,file
domain file file file
ntp-server file file file
time-zone file file file
sip-server file file file
sip-domain file file file
nis-server file file file
nis-domain file file file
nis+-server file file file
nis+-domain file file file

4.4.6 Stateless configuration

If interface does not contain IA or TA keywords, client will ask for one address (one IA with one address
request will be sent). If client should not request any addresses on this interface, stateless8 keyword must
be used. In such circumstances, only specified options will be requested.

4.4.7 Relay support

Usage of the relays is not visible from the client’s point of view: Client can’t detect if it communicates
via relay(s) or directly with the server. Therefore no special directives on the client side are required to
use relays. See section 3.2 for details related to relay deployment.

8In the version 0.2.1-RC1 and earlier, this directive was called no-ia. This depreciated name is valid for now, but might
be removed in future releases.

Dibbler – a portable DHCPv6 User’s Guide 47

4.5 Client configuration examples

This subsection contains various examples of the most popular configurations. Several additional
examples are provided with the source code. Please download it and look at *.conf files.

4.5.1 Example 1: Default

In the most simple case, client configuration file can be empty. Client will try to assign one address
for every interface present in the system, except interfaces, which are:

• down (flag UP not set)

• loopback (flag LOOPBACK set)

• not running (flag RUNNING not set)

• not multicast capable (flag MULTICAST not set)

• have link-layer address less than 6 bytes long (this requirement should skip all tunnels and virtual
interfaces)

If you must use DHCPv6 on one of such interfaces (which is not recommended and such attempt
probably will fail), you must explicitly specify this interface in the configuration file.

4.5.2 Example 2: DNS

Configuration mentioned in previous subsection is a minimal one and in a real life will be used rarely.
The most common usage of the DHCPv6 protocol is to request for an address and DNS configuration.
Client configuration file achieving those goals is presented below:

client.conf

log-mode short

log-level 7

iface eth0 {

ia

option dns-server

}

4.5.3 Example 3: Timeouts and specific address

Automatic configuration is being driven by several timers, which define, what action should be per-
formed at various intervals. Since all values are provided by the server, client can only define values, which
will be sent to a server as hints. Server might take them into consideration, but might also ignore them
completely. Following example shows how to ask for a specific address and provide hints for a server.
Client would like to get 2000::1:2:3 address, it would like to renew addresses once in 30 minutes (T1 timer
is set to 1800 seconds). Client also would like to have address, which is prefered for an hour and is valid
for 2 hours.

client.conf

log-mode short

log-level 7

iface eth0 {

T1 1800

T2 2000

Dibbler – a portable DHCPv6 User’s Guide 48

prefered-lifetime 3600

valid-lifetime 7200

ia {

address {

2000::1:2:3

}

}

}

4.5.4 Example 4: More than one address

Another example: client would like to obtain 2 addresses on wifi0 interface. They are necessary since
this particular interface name contains spaces. It is possible to do this in two ways. First is to sent 2
Identity Associations (IA for short). Identity Association is a nice name for a addresses container. This
appears to be a most common way of telling server that this client is interested in more than one address.

client.conf

log-mode short

log-level 5

iface wifi0 {

ia

ia

}

Another way it to send one IA, but include two address hints in it. Server may take them into
consideration (dibbler server does), but some other DHCPv6 implementations may ignore those hints.

client.conf

log-mode short

log-level 5

iface wifi0 {

ia {

address

address

}

}

4.5.5 Example 5: Quick configuration using Rapid-commit

Rapid-commit is a shortened exchange with server. It consists of only two messages, instead of the
usual four. It is worth to know that both sides (client and server) must also support rapid-commit to use
this fast configuration.

client.conf

iface eth1 {

rapid-commit yes

ia

option dns-server

}

Dibbler – a portable DHCPv6 User’s Guide 49

4.5.6 Example 6: Stateless mode

Client can be configured to work in a stateless mode. It means that it will obtain only some configu-
ration parameters, but no addresses. Let’s assume we want all the details stored in a log file and we want
to obtain all possible configuration parameters. Here is a configuration file:

client.conf

log-level 8

log-mode full

stateless

iface eth0

{

option dns-server

option domain

option ntp-server

option time-zone

option sip-server

option sip-domain

option nis-server

option nis-domain

option nis+-server

option nis+-domain

}

4.5.7 Example 7: Dynamic DNS (FQDN)

Dibbler client is able to request fully qualified domain name, i.e. name, which is fully resolvable using
DNS. After receiving such name, it can perform DNS Update procedure. Client can ask for any name,
without any preferrence. Here is an example how to configure client to perform such task:

client.conf

uncomment following line to force S bit to 0

option fqdn-s 0

log-level 7

iface eth0 {

ask for address

ia

ask for options

option dns-server

option domain

option fqdn

}

In this case, client will mention that it is interested in FQDN by using Option Request and empty
FQDN option, as specified in [14]. Server upon receiving such request (if it is configured to support it),
will provide FQDN option containing domain name. Depending on the server’s configuration, all DNS
Updates will be performed by the server, forward will be performed by client and reverse by the server,
or only forward will be done by a client.

It is also possible for client to provide its name as a hint for server. Server might take it into consid-
eration when it will choose a name for this client. Example of a configuration file for such configuration

Dibbler – a portable DHCPv6 User’s Guide 50

is provided below:

client.conf

log-level 7

iface eth0 {

ask for address

ia

ask for options

option dns-server

option domain

option fqdn zoe.example.com

}

Note that to successfully perform DNS Update, address must be assigned and dns server address must
be known. So ,,ia” and ,,option dns-server” are required for ,,option fqdn” to work properly. Also if
DHCPv6 server provides more than one DNS server address, update will be attempted only forthe first
address on the list.

It is also possible to force S bit in the FQDN option to 0 or 1. See [14] for details regarding its
meaning.

4.5.8 Example 8: Interface indexes

Usually, interface names are referred to by names, e.g. eth0 or Local Area Connection. Every system
also provides unique number associated with each infterface, usually called ifindex or interface index. It
is possible to read the number using ip l command (Linux) or ipv6 ifx. Below is an example, which
demonstrate how to use interface indexes:

client.conf

log-mode short

log-level 5

iface 5 {

ia

}

4.5.9 Example 9: Vendor-specific options

It is possible to configure dibbler-client to ask for a vendor specific options. Although there are no
dibbler-specific features to configure, it is possible to use this option to test other server implementations.
This option will rather be used by network engineers and power network admins, rather than normal end
users.

There are 3 ways to define, how dibbler-client can request vendor-specific options. First choice: It can
just ask for this option (only option request option will be sent). Second choice: it can ask for vendor-spec
option by adding such option with enterprise number set, but no actual data. Third choice: send this
option and include both enterprise number and actual data. In the following configuration file example,
uncomment appropriate line to obtain desired bahavior:

client.conf

log-level 8

iface eth0 {

ask for address

ia

Dibbler – a portable DHCPv6 User’s Guide 51

uncomment only one of the following lines:

option vendor-spec

option vendor-spec 1234

option vendor-spec 1234 0x0002abcd

To ask for multiple vendor-spec options, uncomment:

option vendor-spec 123,456

}

Although that is almost never needed, it is possible to configure client to request multiple vendor-
specific options at the same time. That feature is mainly used as a test tool for the server. To use it,
uncomment last line in the example above.

4.5.10 Example 10: Unicast communication

Client would like to obtain an address on ,,Local Area Connection” interface. Note quotation marks
around interface name. They are necessary since this particular interface name contains spaces. Client
also would like to accept Unicast communication if server supports it. User wants all information to be
logged via Linux syslog daemon. Take note that you won’t be able see to what Dibbler is doing with such
low log-level. (Usually log-level should be set to 7, which is also a default value).

client.conf

log-mode syslog

log-level 5

iface "Local Area Connection" {

unicast yes

ia

ia

}

4.5.11 Example 11: Prefix delegation

From the client’s point of view, configuration is quite simple. It is required to specify that this client is
interested in prefix delegation. See section 3.1 for background information related to prefix delegation and
sections 4.7.13 and 4.7.14 for details about server configuration. To ask for prefix delegation, emphprefix-
delegation (or pd) should be used.

client.conf

iface "eth0" {

ia // ask for address

pd // ask for prefix

}

It is possible to define additional parameters for a prefix:

client.conf

iface eth0 {

pd {

t1 1000

t2 2000

}

Dibbler – a portable DHCPv6 User’s Guide 52

}

4.5.12 Example 12: Insist mode

During normal operation, when client asks for an option, but does not receive it from the server, it
complain, but takes no action. To force client to insist (i.e. ask over and over again), so called insist
mode has been introduced. See section 3.16 for extended explanation.

insist-mode

iface "eth0" {

ia

option dns-server

option domain

option ntp-server

}

4.5.13 Example 13: Inactive mode

Usually client starts when network interfaces are operational. Normally downed or nonexisting in-
terfaces mentioned in the configuration file are considered misconfiguration and client refuses to start.
However, sometimes that is not the case, e.g. still waiting to be associated wireless interfaces. To al-
low operation in such circumstances, inactive mode has been added. See 3.15 for detailed explanation.
interfaces are spec

inactive-mode

iface "eth0" {

ia

}

4.5.14 Example 14: Authentication

Authentication is enabled. Client will accept HMAC-SHA-512, HMAC-MD5 and HMAC-SHA-256 as
an authentication method.

client.conf

log-mode short

log-level 7

auth-enabled true

auth-accept-methods digest-hmac-sha512, digest-hmac-md5, digest-hmac-sha256

iface eth0 {

}

4.5.15 Example 15: Skip Confirm

Client detects if previous client instance was not shutdown properly (due to power outage, client crash
or similar event). In such case, it reads existing address database and checks if assigned addresses may
still be valid. If that is so, it tries to confirm those addresses by using CONFIRM message.

Dibbler – a portable DHCPv6 User’s Guide 53

If user don’t want CONFIRM message to be send and client should start ”from scratch” every time,
it is possible to disable confirm support.

client.conf

log-mode short

log-level 7

skip-confirm

iface eth0 {

ia

}

4.5.16 Example 15: User-defined IAID

Sometimes it is useful to define specific IAID identifiers. That is rather uncommon, but possible. This
technique can be used for both addresses (IA NA options) and prefixes (IA PD options).

client.conf

iface "eth0" {

ia 123

option dns-server

option domain

}

4.5.17 Example 16: DS-Lite tunnel (AFTR)

Server may provide information about AFTR (a Dual Stack Lite tunnel endpoint) to the clients, as
specified in [22].

iface "eth0" {

ia

option aftr # request name of the remote DS-Lite tunnel endpoint

}

4.5.18 Example 17: Custom options

Client is able to ask for custom options, that are not supported by default. Following config file allows
client to ask for many options. Also, see Section 3.3 for extended explanation.

#client.conf

iface "eth0" {

unicast 1

ia

option 145 - 01:02:a3:b4:c5:dd:ea

option 146 address 2001:db8:1::dead:beef

option 147 address-list 2001:db8:1::aaaa,2001:db8:1::bbbb

option 148 string "secretlair.example.org"

Dibbler – a portable DHCPv6 User’s Guide 54

option 149 string request

option 150 address request

option 151 address-list request

4.5.19 Example 18: Remote Autoconfiguration

Client is able to use experimental extension to ask for configuration remotely. See Section 3.19.3 for
details.

log-mode short

log-level 8

experimental

remote-autoconf

iface "eth0" {

ia

unicast 1

option dns-server

option domain

option nis-server

option nis-domain

option nis+-server

option nis+-domain

option time-zone

option lifetime

}

4.6 Server configuration file

Server configuration is stored in server.conf file in the /etc/dibbler (Linux systems) or in current
(Windows systems) directory.

4.6.1 Global scope

Every option can be declared in a global scope. Global options can be defined here. Also options of a
smaller scopes can be defined here – they will be used as a default values. Configuration file has following
syntax:

global-options

interface-options

class-options

interface-declaration

4.6.2 Interface declaration

Each network interface, which should be serviced by the server, must be mentioned in the configuration
file. Network interface is defined like this:

iface interface-name

{

interface-options

Dibbler – a portable DHCPv6 User’s Guide 55

class-options

}

or

iface number

{

interface-options

class-options

}

where interface-name denotes name of the interface and interface-number denotes its number.
Name no longer needs to be enclosed in single or double quotes (except Windows systems, when interface
name contains spaces). Note that virtual interfaces, used to setup relay support are also declared in this
way.

4.6.3 Class scope

Class is a smallest scope used in the server configuration file. It contains definition of the addresses,
which will be provided to clients. Only class scoped parameters can be defined here. Address class is
declared as follows:

class

{

class-options

address-pool

}

Address pool defines range of the addresses, which can be assigned to the clients. It can be defined in
one of the following formats:

pool minaddress-maxaddress

pool address/prefix

4.6.4 Standard options

So called standard options are defined by the base DHCPv6 specification, a so called RFC 3315
document [5]. Those options are called standard, because all DHCPv6 implementations, should properly
handle them. Each option has a specific scope it belongs to.

Standard options are declared in the following way:

OptionName option-value

work-dir – (scope: global, type: string, default: .) Defines working directory.

log-level – (scope: global, type: integer, default: 7) Defines verbose level of the log messages. The valid
range if from 1 (Emergency) to 8 (Debug). The higher the logging level is set, the more messages
dibbler will print.

log-name – (scope: global, type: string, default: Server). Defines name, which should be used during
logging.

Dibbler – a portable DHCPv6 User’s Guide 56

log-mode – (scope: global, type: short, full, precise or syslog default value: full) Defines logging mode.
In the default, full mode, name, date and time in the h:m:s format will be printed. In short mode,
only minutes and seconds will be printed (this mode is useful on terminals with limited width).
Recently added precise mode logs information with seconds and microsecond precision. It is a
useful for finding bottlenecks in the DHCPv6 autoconfiguration process. Syslog is a Linux mode
only.

cache-size – (scope: global, type: integer, default: 1048576). It defines a size of the memory (specified
in bytes) which can se used to store cached entries.

interface-id-order – (scope: global, type: before, after or omit, default: before) This parameter defines
placement of the interface-id option. During message relaying options can be placed in the RELAY-
REPL message is arbitrary order. This option has been specified to control that order. interface-id
option can be placed before or after relay-message option. There is also possibility to instruct
server to omit the interface-id option altogether, but since this violates [5], it should not be used.
In general, this configuration parameter is only useful when dealing with buggy relays, which can’t
handle all option orders properly. Consider this parameter a debugging feature. Note: similar
parameter is available in the dibbler-relay.

inactive-mode – (scope: global, type: present or missing, default: missing). This enables so called
inactive mode. When server begins operation and it detects that required interfaces are not ready,
error message is printed and server exits. However, if inactive mode is enabled, server sleeps instead
and wait for required interfaces to become operational. That is a useful feature, when using wireless
interfaces, which take some time to initialize as associate.

guess-mode – (scope: global, type: present or missing, default: missing). When this option is enabled,
server will not pay close attention to the interface-id option in relayed messages. If interface-id has
a value other than specified in server.conf or even when there is no interface-id option at all, it will
use first relay defined.

preference – (scope: interface, type: 0-255, default: none). Eech server can be configured to a spe-
cific preference level. When client receives several ADVERTISE messages, it should choose that
server, which has the highest preference level. It is also worth noting that client, upon reception
of the ADVERTISE message with preference set to 255 should skip wait phase for possible other
ADVERTISE messages.

unicast – (scope: interface, type: address, default:none). Normally clients sends data to a well known
multicast address. This is easy to achieve, but it wastes network resources as all nodes in the network
must process such messages and also network load is increased. To prevent this, server might be
configured to inform clients about its unicast address, so clients, which accept it, will switch to a
unicast communication.

rapid-commit – (scope: interface, type: boolean, default: 0). This option allows rapid commit proce-
dure to be performed. Note that enabling rapid commit on the server side is not enough. Client
must be configured to allow rapid commit, too.

iface-max-lease – (scope: interface, type: integer, default: 232− 1). This parameter defines, how many
normal addresses can be granted on this interface.

client-max-lease – (scope: interface, type: interger, default:232−1). This parameter defines, how many
addresses one client can get. Main purpose of this parameter is to limit number of used addresses
by misbehaving (malicious or restarting) clients.

Dibbler – a portable DHCPv6 User’s Guide 57

relay – (scope: interface, type: string, default: not defined). Used in relay definition. It specifies name
of the physical (or name of another relay, if cascade relaying is used) interface, which is used to
receive and transmit relayed data. See 3.2 for details of relay deployment and sections 4.7.8 and
4.7.9 for configuration examples.

interface-id – (scope: interface, type: integer, default: not defined). Used in relay definition. Each relay
interface should have defined its unique identified. It will be sent in the interface-id option. Note
that this value must be the same as configured in the dibbler-relay. It may be possible to specify
this parameter by using a number (option will be 4 bytes long), a string or a full hex dump. See
3.2, 4.7.8 and 4.9 for details.

vendor-spec – (scope: interface, type: integer-hexstring, default: not defined). This parameter can
be used to configure some vendor-specific information option. Since there are no dibbler-specific
options, this implementation is flexible. User can specify in the configuration file, how should this
option look like. See 4.7.11 section for details. It is uncommon, but possible to define several vendor
specific options for different vendors. In such case, administrator must specify coma separated list.
Each list entry is a vendor (enterprise number), ,,–” sign and a hex dump (similar to DUID).

T1 – (scope: class, type: integer or integer range: default: 232 − 1). This value defines after what time
client should start renew process. Exact value or accepted range can be specified. When exact value
is defined, client’s hints are ignored completely.

T2 – (scope: class, type: integer or integer range, default:232 − 1). This value defines after what time
client will start emergency rebind procedure if renew process fails. Exact value or accepted range
can be specified. When exact value is defined, client’s hints are ignored completely.

valid-lifetime (scope: class, type: integer or integer range, default:232−1). This parameter defines valid
lifetime of the granted addresses. If range is specified, client’s hints from that range are accepted.

prefered-lifetime (scope: class, type: integer or integer range, default:232 − 1). This parameter defines
prefered lifetime of the granted addresses. If range is specified, client’s hits from that range will be
accepted.

class-max-lease – (scope: interface, type: interger, default:232 − 1). This parameter defines, how many
addresses can be assigned from that class.

reject-clients – (scope: class, type: address or DUID list, default: none). This parameter is sometimes
called black-list. It is a list of a clients, which should not be supported. Clients can be identified by
theirs link-local addresses or DUIDs.

accept-only – (scope: class, type: address or DUID list, default: none). This parameter is sometimes
called white-list. It is a list of supported clients. When this list is not defined, by default all clients
(except mentioned in reject-clients) are supported. When accept-only list is defined, only client
from that list will be supported.

4.6.5 Additional options

Server supports additional options, not specified in [5]. They have following generic form:

option OptionName OptionsValue

All supported options are specified below:

Dibbler – a portable DHCPv6 User’s Guide 58

dns-server – (scope: interface, type: address list, default: none). This option conveys information about
DNS servers available. After retriving this information, clients will be able to resolve domain names
into IP (both IPv4 and IPv6) addresses. Defined in [7].

domain – (scope: interface, type: domain list, default: none). This option is used for configuring
one or more domain names, which clients are connected in. For example, if client’s hostname is
alice.mylab.example.com and it wants to contact bob.mylab.example.com, it can simply refer
to it as bob. Without domain name configured, it would have to use full domain name. Defined in
[7].

ntp-server – (scope: interface, type: address list, default: none). This option defines information about
available NTP servers. Network Time Protocol [1] is a protocol used for time synchronisation, so
all hosts in the network has the same proper time set. Defined in [13].

time-zone – (scope: interface, type: timezone, default: none). It is possible to configure timezone, which
is provided by the server. Note that this option is considered obsolete as it is mentioned in draft
version only [17]. Work on this draft seems to be abandoned as similar functionality is provided by
now standard [13].

sip-server – (scope: interface, type: address list, default: none). Session Initiation Protocol [4] is an
control protocol for creating, modifying, and terminating sessions with one or more participants.
These sessions include Internet telephone calls, multimedia distribution, and multimedia conferences.
Its most common usage is VoIP. Format of this option is defined in [6].

sip-domain – (scope: interface, type: domain list, default: none). It is possible to define domain names
for Session Initiation Protocol [4]. Configuration of this parameter will ease usage of domain names
in the SIP protocol. Format of this option is defined in [6].

nis-server – (scope: interface, type: address list, default: none). Network Information Service (NIS) is
a Unix-based system designed to use common login and user information on multiple systems, e.g.
universities, where students can log on to ther accounts from any host. Its format is defined in [11].

nis-domain – (scope: interface, type: domain list, default: none). Network Information Service (NIS)
can albo specify domain names. It can be configured with this option. It is defined in [11].

nis+-server – (scope: interface, type: address list, default: none). Network Information Service Plus
(NIS+) is an improved version of the NIS protocol. This option is defined in [11].

nis+-domain – (scope: interface, type: domain list, default: none). Similar to nis-domain, it defines
domains for NIS+. This option is defined in [11].

lifetime – (scope: interface, type: boolean, default: no). Base spec of the DHCPv6 protocol does offers
way of refreshing addresses only, but not the options. Lifetime defines, how often client should
renew all its options. When defined, lifetime option will be appended to all replies, which server
sends to a client. If client does not support it, it should ignore this option. Format of this option is
defined in [16].

aftr – (scope: interface, type: FQDN). In Dual-Stack Lite networks, client may want to configure DS-
Lite tunnel. Client may want to obtain information about AFTR (a remote tunnel endpoint). This
option conveys a fully qualified domain name of the remote tunnel. This option is defined in [22].

auth-method – (scope: global, type: string, default: empty). Set it to one of the following values
to enable authentication on ther server side, using selected method of generating authentication
information:

Dibbler – a portable DHCPv6 User’s Guide 59

• none

• digest plain

• digest hmac md5

• digest hmac sha1

• digest hmac sha224

• digest hmac sha256

• digest hmac sha384

• digest hmac sha512

auth-lifetime – (scope: global, type: integer, default: 0). Authentication lifetime. Currently not
supported.

auth-key-len – (scope: global, type: integes, default: 32). Key generation nonce length (see [18] for
details).

Lifetime is a special case. It is not set up by client in a system configuration. It is, however, used by
the client to know how long obtained values are correct and initiate RENEW or INF-REQUEST message
exchange to refresh received options.

4.7 Server configuration examples

This subsection contains various examples of the server configuration. If you are interested in addi-
tional examples, download source version and look at *.conf files.

4.7.1 Example 1: Simple

In opposite to client, server uses only interfaces described in config file. Let’s examine this common
situation: server has interface named eth0 (which is fourth interface in the system) and is supposed to
assign addresses from 2000::100/124 class. Simplest config file looks like that:

server.conf

iface eth0

{

class

{

pool 2000::100-2000::10f

}

}

4.7.2 Example 2: Timeouts

Server should be configured to deliver specific timer values to the clients. This example shows how to
instruct client to renew (T1 timer) addresses one in 10 minutes. In case of problems, ask other servers
in 15 minutes (T2 timer), that allowe prefered lifetime range is from 30 minutes to 2 hours, and valid
lifetime is from 1 hour to 1 day. DNS server parameter is also provided. Lifetime option is used to make
clients renew all non-address related options renew once in 2 hours.

server.conf

iface eth0

{

Dibbler – a portable DHCPv6 User’s Guide 60

T1 600

T2 900

prefered-lifetime 1800-3600

valid-lifetime 3600-86400

class

{

pool 2000::100/80

}

option dns-server 2000::1234

option lifetime 7200

}

4.7.3 Example 3: Limiting amount of addresses

Another example: Server should support 2000::0/120 class on eth0 interface. It should not allow any
client to obtain more than 5 addresses and should not grant more then 50 addresses in total. From this
specific class only 20 addresses can be assigned. Server preference should be set to 7. This means that
this server is more important than all server with preference set to 6 or less. Config file is presented below:

server.conf

iface eth0

{

iface-max-lease 50

client-max-lease 5

preference 7

class

{

class-max-lease 20

pool 2000::1-2000::100

}

}

4.7.4 Example 4: Unicast communication

Here’s modified previous example. Instead of specified limits, unicast communication should be sup-
ported and server should listen on 2000::1234 address. Note that default multicast address is still sup-
ported. You must have this unicast address already configured on server’s interface.

server.conf

log-level 7

iface eth0

{

unicast 2000::1234

class

{

pool 2000::1-2000::100

}

}

Dibbler – a portable DHCPv6 User’s Guide 61

4.7.5 Example 5: Rapid-commit

This configuration can be called quick. Rapid-commit is a way to shorten exchange to only two
messages. It is quite useful in networks with heavy load. In case if client does not support rapid-commit,
another trick is used. Preference is set to maximum possible value. 255 has a special meaning: it makes
client to skip wait phase for possible advertise messages from other servers and quickly request addresses.

server.conf

log-level 7

iface eth0

{

rapid-commit yes

preference 255

class

{

pool 2000::1/112

}

}

4.7.6 Example 6: Access control

Administrators can selectively allow certain client to use this server (white-list). On the other hand,
some clients could be explicitly forbidden to use this server (black-list). Specific DUIDs, DUID ranges,
link-local addresses or the whole address ranges are supported. Here is config file:

server.conf

iface eth0

{

class

{

duid of the rejected client

reject-clients ‘‘00001231200adeaaa’’

2000::2f-2000::20 // it’s in reverse order, but it works.

// just a trick.

}

}

iface eth1

{

class

{

accept-only fe80::200:39ff:fe4b:1abc

pool 2000::fe00-2000::feff

}

}

4.7.7 Example 7: Multiple classes

Although this is not common, a few users have requested support for multiple classes on one interface.
Dibbler server can be configured to use several classes. When client asks for an address, one of the classes
is being choosen on a random basis. If not specified otherwise, all classes have equal probability of being
chosen. However, this behavior can be modified using share parameter. In the following example, server

Dibbler – a portable DHCPv6 User’s Guide 62

supports 3 classes with different preference level: class 1 has 100, class 2 has 200 and class 3 has 300.
This means that class 1 gets 100

100+200+300 ≈ 16% of all requests, class 2 gets 200
100+200+300 ≈ 33% and class

3 gets the rest (300
100+200+300 = 50%).

server.conf

log-level 7

log-mode short

iface eth0 {

T1 1000

T2 2000

class {

share 100

pool 4000::1/80

}

class {

share 200

pool 2000::1-2000::ff

}

class {

share 300

pool 3000::1234:5678/112

}

}

4.7.8 Example 8: Relay support

To get more informations about relay configuration, see section 3.2. Following server configuration
example explains how to use relays. There is some remote relay with will send encapsulated data over
eth1 interface. It is configured to append interface-id option set to 5020 value. Let’s allow all clients using
this relay some addresses and information about DNS servers. Also see section 4.9.1 for corresponding
relay configuration.

Note that although eth1 interface is mentioned in the configuration file, direct traffic from clients
located on the eth1 interface will not be supported. In this example, eth1 is used only to support requests
relayed from remote link identified with interface-id value 5020. Of course it is possible to support both
local and remote traffic. In such case, normal eth1 definition should be present in the server configuration
file. Also note that real (physical) interfaces should be specified before logical ones.

server.conf

iface relay1 {

relay eth1

// interface-id 5020

// interface-id "some interface name"

interface-id 0x427531264361332f3000001018680f980000

class {

pool 2000::1-2000::ff

}

option dns-server 2000::100,2000::101

Dibbler – a portable DHCPv6 User’s Guide 63

}

4.7.9 Example 9: Cascade 2 relays

This is an advanced configuration. It assumes that client sends data to relay1, which encapsulates
it and forwards it to relay2, which eventually sends it to the server (after additional encapsulation). It
assumes that first relay adds interface-id option set to 6011 and second one adds similar option set to
6021. For details about relays in general and cascade setup in particular, see section 3.2. Also see section
4.9.4 for corresponding relays configuration.

server.conf

iface relay1

{

relay eth0

interface-id 6011

}

iface relay2

{

relay relay1

interface-id 6021

T1 1000

T2 2000

class {

pool 6020::20-6020::ff

}

}

4.7.10 Example 10: Dynamic DNS (FQDN)

Support for Dynamid DNS Updates was added recently. To configure it on the server side, list of avail-
able names must be defined. Each name can be reserved for a certain address or DUID. When no reserva-
tion is specified, it will available to everyone, i.e. the first client asks for FQDN will get this name. In fol-
lowing example, name ’zebuline.example.com’ is reserved for address 2000::1, kael.example.com is reserved
for 2000::2 and test.example.com is reserved for client using DUID 00:01:00:00:43:ce:25:b4:00:13:d4:02:4b:f5.

Also note that is required to define, which side can perform updates. This is done using single number
after ,,option fqdn” phrase. Server can perform two kinds of DNS Updates: AAAA (forward resolving,
i.e. name to address) and PTR (reverse resolving, i.e. address to name). To configure server to execute
both updates, specify 2. This is a default behavior. If this value will be skipped, server will attempt
to perform both updates. When 1 will be specified, server will update PTR record only and will leave
updating AAAA record to the client. When this value is set to 0, server will not perform any updates.

The last parameter (64 in the following example) is a prefix length of the reverse domain supported
by the DNS server, i.e. if this is set to 64, and 2000::/64 addresses are used, DNS server must support
0.0.0.0.0.0.0.0.0.0.0.0.0.0.2.ip6.arpa. zone.

server.conf

log-level 8

log-mode precise

iface "eth1" {

prefered-lifetime 3600

Dibbler – a portable DHCPv6 User’s Guide 64

valid-lifetime 7200

class {

pool 2000::1-2000::ff

}

option dns-server 2000::100,2000::101

option domain example.com, test1.example.com

option fqdn 2 64

zebuline.example.com - 2000::1,

kael.example.com - 2000::2,

test.example.com - 0x0001000043ce25b40013d4024bf5,

zoe.example.com,

malcolm.example.com,

kaylee.example.com,

jayne.example.com

}

4.7.11 Example 11: Vendor-specific Information option

It is possible to configure dibbler-server to provide vendor-specific information options. Since there
are no dibbler-specific parameters, this implementation is quite flexible. Enterprise number as well as
content of the option itself can be configured.

server.conf

log-level 8

log-mode precise

iface "eth1" {

class {

pool 2000::1-2000::ff

}

option vendor-spec 1234-0x00002fedc

}

In some rare cases, several different options for different vendors may be specifed. In the folloging
example 2 different values are defined, depending on which vendor client will specify in SOLICIT or
REQUEST message. If client will only mention that it is interested in any vendor specific into (i.e. did
not sent vendor-spec info option, but only mentioned in in option request option, it will receive first vendor
option defined (in the following example, that would be a 1234 and 0002fedc).

server.conf

log-level 8

log-mode precise

iface "eth1" {

class {

pool 2000::1-2000::ff

}

option vendor-spec 1234-0x00002fedc,5678-0x0002aaaa

}

Dibbler – a portable DHCPv6 User’s Guide 65

4.7.12 Example 12: Per client configuration

Usually all clients receive the same configuration options, e.g. all clients will use the same DNS
server. However, it is possible to specify that particular clients should receive different options than
others. Following example set DNS server to 2000::1, domain to example.com and vendor specific in-
formation for vendor 5678. However, if requesting client has DUID 00:01:02:03:04:05:06:07:08, it will
receive different parameters (second.client.biz domain, 1234::5678:abcd as a DNS server and finally differ-
ent vendor-specific information). Also client with DUID 0x0001000044e8ef3400085404a324 will receives
normal domain and DNS server, but different (vendor=2) vendor specific information. See section 3.13
for background information. Since 0.8.0RC1, also addresses can be reserverd in this way.

server.conf

iface "eth0" {

class {

pool 2000::1/64

}

common configuration options, provided for all clients

option dns-server 2000::1

option domain example.com

option vendor-spec 5678-0x0002aaaa

special parameters for client with DUID 00:01:02:03:04:06

client duid 0x000102030406

{

address 2001::123

option domain second.client.biz

option dns-server 1234::5678:abcd

option vendor-spec 2-0x000122, 22-0x222222

}

special address reserved for client with this remote-id option

(remote-id option may be added by relays)

client remote-id 5-0x01020304

{

address 2000::0102:0304

option domain our.special.remoteid.client.org

}

client link-local fe80::211:25ff:fe12:6688

(link-local reservation is not supported yet. configure clients

to use DUID-LL (link-local address based DUID) and then make

DUID based reservations)

{

option domain link.local.detected.interop.test.com

}

}

Dibbler – a portable DHCPv6 User’s Guide 66

4.7.13 Example 13: Prefix delegation

Prefix delegation works quite similar to normal address granting. Administrator defines pool and
server provides prefixes from that pool. Before using prefix delegation, please read section 3.1. Client
configuration example is described in section 4.5.11.

server.conf

log-mode precise

iface "eth0" {

the following lines instruct server to grant each client

prefix for this pool. For example, client might get

2222:2222:2222:2222:2222:993f::/96

pd-class {

pd-pool 2222:2222:2222:2222:2222::/80

pd-length 96

T1 11111

T2 22222

}

}

4.7.14 Example 14: Multiple prefixes

It is possible to define more than one pool, so each client will receive several prefixes. It is necessary to
define each pool with the same length, i.e. it is not possible to mix different pool lengths. See section 3.1
for prefix delegation background information. Client configuration example is described in section 4.5.11.

server.conf

log-mode precise

iface "eth0" {

T1 1800

T2 2700

prefered-lifetime 3600

valid-lifetime 7200

provide addresses from this pool

class {

pool 5000::/48

}

the following lines instruct server to grant each client

2 prefixes. For example, client might get

2222:2222:2222:2222:2222:993f:6485::/96 and

1111:1111:1111:1111:1111:993f:6485::/96

pd-class {

pd-pool 2222:2222:2222:2222:2222::/80

pd-pool 1111:1111:1111:1111:1111::/80

Dibbler – a portable DHCPv6 User’s Guide 67

pd-length 96

T1 11111

T2 22222

}

}

4.7.15 Example 15: Inactive mode

See sections 4.5.13 and 3.15 for inactive mode explanation. The same behavior has been added for
server.

#server.conf

log-level 8

inactive-mode

iface "eth0" {

class {

pool 2000::/64

}

}

4.7.16 Example 16: Leasequery

A separate entity called requestor can send queries regarding assigned addresses and prefixes. Server
can be configured to support such lease queries. See section 3.6 for detailed explanation.

#server.conf

log-level 8

iface "eth0" {

accept-leasequery

class {

pool 2000::/64

}

}

4.7.17 Example 17: Authentication

It is possible to configure server to require authentication. In this example, HMAC-SHA-512 will be
used as an authentication method. Key Generation Nonce will have 64 bytes.

server.conf

auth-method digest-hmac-sha512

auth-key-len 64

Dibbler – a portable DHCPv6 User’s Guide 68

iface eth0

{

class

{

pool 2000::100-2000::10f

}

}

4.7.18 Example 18: Relay support with unknown interface-id

To get more informations about relay configuration, see section 3.2. In pervious examples (4.7.8,
4.7.9) it was assumed that interface-id set by relay is known. However, in some cases that is not true. If
sysadmin wants to accept relayed messages from any relay, there is a feature called guess mode. It tries
to match any relay defined in server.conf instead of exactly checking interface-id value.

Since there is only one relay defined, it will be used, regardless of the interface-id value (or even lack
of thereof).

server.conf

guess-mode

iface relay1 {

relay eth1

interface-id 5020

class {

pool 2000::1-2000::ff

}

option dns-server 2000::100,2000::101

}

4.7.19 Example 19: DS-Lite tunnel (AFTR)

Server is able to provide Dual-Stack lite configuration for clients. Both address and name based
configurations are supported:

iface "eth0" {

class {

pool 2001:db8::/64

}

option ds-lite 2001:db8:1::ffff

option ds-lite sc.example.org

}

4.7.20 Example 20: Custom options

Server may be configured to also provide custom options to the clients. See Section 3.3 for details.

iface "eth0" {

class {

pool 2001:db8::/64

Dibbler – a portable DHCPv6 User’s Guide 69

}

option 145 - 01:02:a3:b4:c5:dd:ea

option 146 address 2001:db8:1::dead:beef

option 147 address-list 2001:db8:1::aaaa,2001:db8:1::bbbb

option 148 string "secretlair.example.org"

}

4.7.21 Example 21: Remote Autoconfiguration

Server does support experimental extension called remote autoconfiguration, as defined in [24]. See
Section 3.19.3 for details and configuration examples.

4.8 Relay configuration file

Relay configuration is stored in relay.conf file in the /etc/dibbler/ directory (Linux systems) or
in current directory (Windows systems).

4.8.1 Global scope

Every option can be declared in global scope. Config file consists of global options and one or more
inteface definitions. Note that reasonable minimum is 2 interfaces, as defining only one would mean to
resend messages on the same interface.

4.8.2 Interface declaration

Interface can be declared this way:

iface name_of_the_interface

{

interface options

}

or

iface number

{

interface options

}

where name of the interface denotes name of the interface and number denotes it’s number. It does
not need to be enclosed in single or double quotes (except windows cases, when interface name contains
spaces).

4.8.3 Options

Every option has a scope it can be used in, default value and sometimes allowed range.

log-level – (scope: global, type: integer, default: 7) Defines verbose level of the log messages. The valid
range if from 1 (Emergency) to 8 (Debug). The higher the logging level is set, the more messages
dibbler will print.

log-name – (scope: global, type: string, default: Client). Defines name, which should be used during
logging.

Dibbler – a portable DHCPv6 User’s Guide 70

log-mode – (scope: global, type: short, full or precise, default value: full) Defines logging mode. In the
default, full mode, name, date and time in the h:m:s format will be printed. In short mode, only
minutes and seconds will be printed (this mode is useful on terminals with limited width). Recently
added precise mode logs information with seconds and microsecond precision. It is a useful for
finding bottlenecks in the DHCPv6 autoconfiguration process.

interface-id-order – (scope: global, type: before, after or omit, default: before) Defines placement of
the interface-id option. Options can be placed in the RELAY-FORW message is arbitrary order.
This option has been specified to control that order. interface-id option can be placed before or
after relay-message option. There is also possibility to instruct server to omit the interface-id option
altogether, but since this violates [5], it should not be used. In general, this configuration parameter
is only useful when dealing with buggy relays, which can’t handle all option orders properly. Consider
this parameter a debugging feature. Note: similar parameter is available in the dibbler-server.

client multicast – (scope: interface, type: boolean, default: false) This command instructs dibbler-relay
to listen on this particular interface for client messages sent to multicast (ff02::1:2) address.

client unicast – (scope: interface, type: address, default: not defined) This command instructs dibbler-
relay to listen to messages sent to a specific unicast address. This feature is usually used to connect
multiple relays together.

server multicast – (scope: interface, type: boolean, default: false) This command instructs dibbler-
relay to send messages (received on any interface) to the server multicast (ff05::1:3) address. Note
that this is not the same multicast address as the server usually listens to (ff02::1:2). Server must
be specifically configured to be able to receive relayed messages.

server unicast – (scope: interface, type: address, default: none) This command instructs dibbler-relay
to send message (received on any interface) to speficied unicast address. Server must be properly
configured to to be able to receive unicast traffic. See unicast command in the 4.7.4 section.

interface-id – (scope: interface, type: integer, default: none) This specifies identifier of a particular
interface. It is used to generate interface-id option, when relaying message to the server. This option
is then used by the server to detect, which interface the message originates from. It is essential to
have consistent interface-id defined on the relay side and server side. It is worth mentioning that
interface-id should be specified on the interface, which is used to receive messages from the clients,
not the one used to forward packets to server.

guess-mode – (scope: global, type: boolean, default: no) Switches relay into so called guess-mode.
Under normal operation, client sends messages, which are encapsulated and sent to the server.
During this encapsulation relay appends interface-id option and expects that server will use the
same interface-id option in its replies. Relay then uses those interface-id values to detect, which
the original request came from and sends reply to the same interface. Unfortunately, some servers
does not sent interface-id option. Normally in such case, dibbler-relay drops such server messages
as there is no easy way to determine where such messages should be relayed to. However, when
guess-mode is enabled, dibbler-relay tries to guess the destination interface. Luckily, it is often
trivial to guess as there are usually 2 interfaces: one connected to server and second connected to
the clients.

4.9 Relay configuration examples

Relay configuration file is fairly simple. Relay forwards DHCPv6 messages between interfaces. Mes-
sages from client are encapsulated and forwarded as RELAY FORW messages. Replies from server are
received as RELAY REPL message. After decapsulation, they are being sent back to clients.

Dibbler – a portable DHCPv6 User’s Guide 71

It is vital to inform server, where this relayed message was received. DHCPv6 does this using interface-
id option. This identifier must be unique. Otherwise relays will get confused when they will receive reply
from server. Note that this id does not need to be alligned with system interface id (ifindex). Think
about it as ”ethernet segment identifier” if you are using Ethernet network or as ”bss identifier” if you
are using 802.11 network.

If you are interested in additional examples, download source version and look at *.conf files.

4.9.1 Example 1: Simple

Let’s assume this case: relay has 2 interfaces: eth0 and eth1. Clients are located on the eth1 net-
work. Relay should receive data on that interface using well-known ALL DHCP RELAYS AND SERVER
multicast address (ff02::1:2). Note that all clients use multicast addresses by default. Packets received
on the eth1 should be forwarded on the eth0 interface, using multicast address. See section 4.7.8 for
corresponding server configuration.

relay.conf

log-level 8

log-mode short

iface eth0 {

server multicast yes

}

iface eth1 {

client multicast yes

interface-id 5020

}

4.9.2 Example 2: Unicast/multicast

It is possible to use unicast addresses instead/besides of default multicast addresses. Following example
allows message reception from clients on the 2000::123 address. It is also possible to instruct relay to send
encapulated messages to the server using unicast addresess. This feature is configured in the next section
(4.9.3).

relay.conf

log-level 8

log-mode short

iface eth0 {

server multicast yes

}

iface eth1 {

client multicast yes

client unicast 2000::123

interface-id 5020

}

4.9.3 Example 3: Multiple interfaces

Here is another example. This time messages should be forwarded from eth1 and eth3 to the eth0
interface (using multicast) and to the eth2 interface (using server’s global address 2000::546). Also clients
must use multicasts (the default approach):

Dibbler – a portable DHCPv6 User’s Guide 72

relay.conf

iface eth0 {

server multicast yes

}

iface eth2 {

server unicast 2000::456

}

iface eth1 {

client multicast yes

interface-id 1000

}

iface eth3 {

client multicast yes

interface-id 1001

}

4.9.4 Example 4: 2 relays

Those two configuration files correspond to the ,,2 relays” example provided in section 4.7.9. See
section 3.2 for detailed exmplanations.

relay.conf - relay 1

log-level 8

log-mode full

messages will be forwarded on this interface using multicast

iface eth2 {

server multicast yes // relay messages on this interface to ff05::1:3

server unicast 6000::10 // relay messages on this interface to this global address

}

iface eth1 {

client multicast yes // bind ff02::1:2

client unicast 6011::1 // bind this address

interface-id 6011

}

relay.conf - relay 2

iface eth0 {

server multicast yes // relay messages on this interface to ff05::1:3

server unicast 6011::1 // relay messages on this interface to this global address

}

client can send messages to multicast

(or specific link-local addr) on this link

iface eth1 {

client multicast yes // bind ff02::1:2

client unicast 6021::1 // bind this address

interface-id 6021

Dibbler – a portable DHCPv6 User’s Guide 73

}

4.9.5 Example 5: Guess-mode

In the 0.6.0 release, a new feature called guess-mode has been added. When client sends some data
and relay forwards it to the server, it always adds interface-id option to specify, which link the data has
been originally received on. Server, when responding to such request, should include the same interface-id
option in the reply. However, in some poor implementations, server fails to do that. When relay receives
such poorly formed response from the server, it can’t decide which interface should be used to relay this
message.

Normally such packets are dropped. However, it is possible to switch relay into a guess-mode. It tries
to find any suitable interface, which it can forward data on. It is not very reliable, but sometimes it is
better than dropping the message altogether.

relay.conf

log-level 8

log-mode short

guess-mode

iface eth0 {

server multicast yes

}

iface eth1 {

client multicast yes

interface-id 5020

}

4.9.6 Example 6: Relaying to multicast

During normal operation, relay sends forwarded messages to a All DHCP Servers (FF05::1:3) multi-
cast address.

Although author does not consider this an elegant solution, it is also possible to instruct relay to
forward message to a All DHCP Relay Agents and Servers (ff02::1:2) multicast address. That is quite
convenient when there are several relays connected in a cascade way (server – relay1 – relay2 – clients).

For details regarding DHCPv6-related multicast addresses and relay operation, see [5].
To achieve this behavior, server unicast can be used. Note that name of such parameter is a bit

misleading (“server unicast” used to specify multicast address). That parameter should be rather called
“destination address”, but to maintain backward compatibility, it has its current name.

relay.conf

log-level 8

log-mode short

iface eth0 {

server unicast ff02::1:2

}

iface eth1 {

client multicast yes

interface-id 5020

}

Dibbler – a portable DHCPv6 User’s Guide 74

4.10 Requestor configuration

Requestor (entity used for leasequery) does not use configuration files. All parameters are specified
by command-line switches. See section 3.6 for details.

5 Frequently Asked Questions

Soon after initial Dibbler version was released, feedback from user regarding various things started to
appear. Some of the questions were common enough to get into this section.

5.1 Common Questions

Q: Why client does not configure routing after assigning addresses, so I cannot e.g. ping other hosts?

A: It’s a common misunderstanding. DHCPv4 provides many configuration parameters to host, with
default router address being one of them. Things are done differently in IPv6. Routing configuration is
supposed to be conveyed using Router Advertisements (RA) messages, announced periodically by routers.
Hosts are supposed to listen to those messages and configure their routing appropriately. Note that this
mechanism is completely separate from DHCPv6. It may sound a bit strange, but that’s the way it was
meant to work.

Properly implemented clients are supposed to configure leased address with /128 prefix and learn the
actual prefix from RA. As this is incovenient, many clients (with dibbler included) bend the rules and
configure received addresses with /64 prefix. Please note that this value is arbitrary chosen and may be
improper in many scenarios.

Note: This behaviour has changed in the 0.5.0 release. Previous releases configured received address
with /128 prefix. To restore old, more RFC conformant behavior, see strict-rfc-no-routing directive in
the 4.4 section.

Q: Dibbler server receives SOLICIT message, prints information about ADVERTISE/REPLY trans-
mission, but nothing is actually transmitted. Is this a bug?

A: Are you sure that your client is behaving properly and responds to Neighbor Discovery (ND)
requests? Before any IPv6 packet (that includes DHCPv6 message) is transmitted, recipient reachabity is
checked (using Neighbor Discovery protocol [2]). Server sends Neighbor Solicititation message and waits
for client’s Neighbor Advertisement. If that is not transmitted, even after 3 retries, server gives up and
doesn’t transmit IPv6 packet (DHCPv6 reply, that is) at all. Being not able to respond to the Neighbor
Discovery packets may indicate invalid client behavior.

Q: Dibbler sends some options which have values not recognized by the Ethereal/Wireshark or by
other implementations. What’s wrong?

A: DHCPv6 is a relatively new protocol and additional options are in a specification phase. It
means that until standarisation process is over, they do not have any officially assigned numbers. Once
standarization process is over (and RFC document is released), this option gets an official number.

There’s pretty good chance that different implementors may choose diffrent values for those not-yet
officialy accepted options. To change those values in Dibbler, you have to modify file misc/DHCPConst.h
and recompile server or client. See Developer’s Guide, section Option Values for details.

Q: I can’t get (insert your trouble causing feature here) to work. What’s wrong?

Dibbler – a portable DHCPv6 User’s Guide 75

A: Go to the project http://klub.com.pl/dhcpv6/homepage and browse list archives. If your prob-
lem was not reported before, please don’t hesitate to write to the mailing list or contact author directly.

5.2 Linux specific questions

Q: I can’t run client and server on the same host. What’s wrong?

A: First of all, running client and server on the same host is just plain meaningless, except testing
purposes only. There is a problem with sockets binding. To work around this problem, consult Developer’s
Guide, Tip section how to compile Dibbler with certain options.

Q: After enabling unicast communication, my client fails to send REQUEST messages. What’s wrong?

A: This is a problem with certain kernels. My limited test capabilites allowed me to conclude that
there’s problem with 2.4.20 kernel. Everything works fine with 2.6.0 with USAGI patches. Patched
kernels with enhanced IPv6 support can be downloaded from http://www.linux-ipv6.org/. Please let
me know if your kernel works or not.

5.3 Windows specific questions

Q: After installing Advanced Networking Pack or Windows XP ServicePack2 my DHCPv6 (or other
IPv6 application) stopped working. Is Dibbler compatible with Windows XP SP2?

A: Both products (Advanced Networking Pack as well as Service Pack 2 for Windows XP) provide
IPv6 firewall. It is configured by default to reject all incoming IPv6 traffic. You have to disable this
firewall. To disable firewall on the ,,Local Area Connection” interface, issue following command in a
console:

netsh firewall set adapter "Local Area Connection" filter=disable

Q: Server or client refuses to create DUID. What’s wrong?

A: Make sure that you have at least one up and running interface with at least 6 bytes long MAC
address. Simple ethernet or WIFI card matches those requirements. Note that network cable must be
plugged (or in case of wifi card – associated with access point), otherwise interface is marked as down.

Q: Is Microsoft Windows 8 supported?

A: Unfortunately, Windows 8 is not supported yet.

http://klub.com.pl/dhcpv6/
http://klub.com.pl/lists/dibbler/
http://klub.com.pl/cgi-bin/mailman/listinfo/dibbler
mailto:thomson(at)klub.com.pl
http://www.linux-ipv6.org/

Dibbler – a portable DHCPv6 User’s Guide 76

6 Miscellaneous topics

6.1 History

Dibbler project was started as master thesis by Tomasz Mrugalski and Marek Senderski on Computer
Science faculty on Gdansk University of Technology. Both authors graduated in september 2003 and soon
after started their jobs.

During master thesis writing, it came to my attention that there are other DHCPv6 implementations
available, but none of them has been named properly. Refering to them was a bit silly: ,,DHCPv6
published on sourceforge.net has better support than DHCPv6 developed in KAME project, but our
DHCPv6 implementation...”. So I have decided that this implementation should have a name. Soon it
was named Dibbler after famous CMOT Dibbler from Discworld series by Terry Pratchett.

Sadly, Marek does not have enough free time to develop Dibbler, so his involvement is non-existent at
this time. However, that does not mean, that this project is abandoned. It is being actively developed by
me (Tomek). Keep in mind that I work at full time and do Ph.D. studies, so my free time is also greatly
limited.

6.2 Contact and reporting bugs

There is an website located at http://klub.com.pl/dhcpv6. If you belive you have found a bug,
please put it in Bugzilla – it is a bug tracking system located at http://klub.com.pl/bugzilla. If you
are not familiar with that kind of system, don’t worry. After simple registration, you will be asked for
system and Dibbler version you are using and so on. Without feedback from users, author will not be
aware of many bugs and so will not be able to fix them. That’s why users feedback is very important.
You can also send bug report directly using e-mail. Be sure to be as detailed as possible. Please include
both server and client log files, both config and xml files. If you are familiar with tcpdump or ethereal,
traffic dumps from this programs are also great help.

If you are not sure if your issue is a bug or a configuration problem, you may also want to browse
archives and ask on a mailing list. See following subsection for details.

If you have used Dibbler and it worked ok, this documentation answered all you question and every-
thing is in order (hmmm, wake up, it must be a dream, it isn’t reality:), also send a short note to author.
He can be contated at thomson(at)klub(dot)com(dot)pl (replace (at) with @ and dot with .). Be sure to
include information which country do you live in. It’s just author’s curiosity to know where Dibbler is
being used or tested.

6.3 Mailing lists

There are two mailing lists related to the Dibbler project:

dibbler – Maling list for Dibbler users. It is used to ask for help, report bugs, hay hello and things like
that. If you are not sure, what to do, people on this list will try to help you. Web-inteface link:
http://klub.com.pl/cgi-bin/mailman/listinfo/dibbler

dibbler-devel – That list is intended as a way of communication between people, who are technically
involved in the dibbler development. If you are going to improve dibbler in any way, make sure
that you announce it here. You may get help. Also if you are trying to fix a bug on your own (hey,
that’s great!), this list is a good place to talk about it. Web-interface link: http://klub.com.pl/cgi-
bin/mailman/listinfo/dibbler-devel

Both lists have archives available on-line. You can join or leave one or both lists at any time using
convenient web-interface or using traditional mail-based approach.

http://klub.com.pl/dhcpv6
http://klub.com.pl/bugzilla
http://klub.com.pl/cgi-bin/mailman/listinfo/dibbler
http://klub.com.pl/cgi-bin/mailman/listinfo/dibbler-devel
http://klub.com.pl/cgi-bin/mailman/listinfo/dibbler-devel

Dibbler – a portable DHCPv6 User’s Guide 77

6.4 Thanks and greetings

I would like to send my thanks and greetings to various persons. Without them, Dibbler would not
be where it is today. For a full list of contributors, see AUTHORS file.

Marek Senderski – He’s author of almost half of the Dibbler code. Without his efforts, Dibbler would
be simple, long forgotten by now master thesis.

Jozef Wozniak – My master thesis’ supervisor. He allowed me to see DHCP in a larger scope – as part
of total automatisation process.

Jacek Swiatowiak – He’s my master thesis consultant. He guided Marek and me to take first steps
with DHCPv6 implementation.

Ania Szulc – Discworld fan and a great girl, too. She’s the one who helped me to decide how to name
this yet-untitled DHCPv6 implementation.

Christian Strauf – Without his queries and questions, Dibbler would be abandoned in late 2003.

Bartek Gajda – His interest convinced me that Dibbler is worth the effort to develop it further.

Artur Binczewski and Maciej Patelczyk – They both ensured that Dibbler is (and always will be)
GNU GPL software. Open source community is grateful.

Josep Sole – His mails (directly and indirectly) resulted in various fixes and speeded up 0.2.0 release.

Sob – He has ported 0.4.0 back to Win2000 and NT. As a direct result, 0.4.1 was released for those
platforms, too.

Guy ”GMSoft” Martin – He has provided me with access to HPPA machine, so I was able to squish
some little/big endian bugs. He also uploaded ebuild to the Gentoo portage.

Bartosz ”fEnio” Fenski – He taught me how much work needs to be done, before deb packages are
considered ok. It took me some time to understand that more pain for the package developer means
less problems for the end user. Thanks to him, Dibbler is now part of the Debian GNU/Linux
distribution.

Adrien Clerc and his team – Their contribution of the DNS Updates code is most welcome.

Krzysztof Wnuk – He has fixed, improved and extended DNS Updates support as well as provided
initial support for prefix delegation.

Alain Durand – Thanks for the invitation to interop test session and for allowing me to see DHCPv6
issues in a much broader scope.

Petr Pisar – He has reported lots of bugs, and also often provides fixes. Thanks.

Paul Schauer – Thanks to his effors, Dibbler now works on Mac OS X. He did majority of the porting
work and then did numerous rounds of testing and debugging.

Dibbler – a portable DHCPv6 User’s Guide 78

7 Acknowledgements

Author would like to acknowledge following projects and programmes that supported or continue to
support research and development of the Dibbler software and related activities.

This work has been partially supported by the Polish Ministry of Science and Higher Education un-
der the European Regional Development Fund, Grant No. POIG.01.01.02-00-045/09-00 Future Internet
Engineering.

Dibbler – a portable DHCPv6 User’s Guide 79

References

[1] Mills, D., “Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and OSI”, RFC2030,
IETF, October 1996.

[2] T. Narten, E. Nordmark and W. Simpson “Neighbor Discovery for IP Version 6 (IPv6)”, RFC2461,
December 1998.

[3] S. Thomson, and T. Narten “IPv6 Stateless Address Autoconfiguration”, RFC2462, IETF, December
1998.

[4] J.Rosenberg and H. Schulzrinne, “Session Initiation Protocol (SIP): Locating SIP Servers”, RFC3263,
IETF, June 2002.

[5] R. Droms, Ed. “Dynamic Host Configuration Protocol for IPv6 (DHCPv6)”, RFC3315, IETF, July
2003.

[6] H. Schulzrinne, and B. Volz “Dynamic Host Configuration Protocol (DHCPv6) Options for Session
Initiation Protocol (SIP) Servers”, RFC3319, IETF, July 2003.

[7] S. Thomson, C. Huitema, V. Ksinant and M. Souissi “DNS Extensions to Support IP Version 6”,
RFC3596, IETF, October 2003.

[8] O. Troan, and R. Droms “IPv6 Prefix Options for Dynamic Host Configuration Protocol (DHCP)
version 6”, RFC3633, IETF, December 2003.

[9] R. Droms, Ed. “DNS Configuration options for Dynamic Host Configuration Protocol for IPv6
(DHCPv6)”, RFC3646, IETF, December 2003.

[10] R. Droms, “Stateless Dynamic Host Configuration Protocol (DHCP) Service for IPv6”, RFC3736,
IETF, April 2004.

[11] V. Kalusivalingam “Network Information Service (NIS) Configuration Options for Dynamic Host
Configuration Protocol for IPv6 (DHCPv6)”, RFC3898, IETF, October 2004.

[12] R. Arends, R. Austein, M. Larson, D. Massey and S. Rose “DNS Security Introduction and Require-
ments”, RFC4033, IETF, March 2005

[13] V. Kalusivalingam “Simple Network Time Protocol (SNTP) Configuration Option for DHCPv6”,
RFC4075, IETF, May 2005.

[14] M. Stapp and B.Volz “The Dynamic Host Configuration Protocol for IPv6 (DHCPv6) Client Fully
Qualified Domain Name (FQDN) Option”, RFC4704, IETF, October 2006

[15] J. Brzozowski, K. Kinnear, B. Volz and S. Zeng “DHCPv6 Leasequery”, RFC5007, IETF, September
2007

[16] S. Venaas, T. Chown, and B. Volz “Information Refresh Time Option for DHCPv6”, work in progress,
IETF, January 2005, draft-ietf-dhc-lifetime-03.txt.

[17] A.K. Vijayabhaskar “Time Configuration Options for DHCPv6”, work in progress, IETF, October
2003, draft-ietf-dhc-dhcpv6-opt-timeconfig-03.txt.

[18] Vishnu Ram, Saumya Upadhyaya, Nitin Jain “Authentication, Authorization and key management
for DHCPv6”, work in progress, IETF, August 2006, draft-ram-dhc-dhcpv6-aakey-01.txt.

http://tools.ietf.org/html/rfc2030
http://tools.ietf.org/html/rfc2461
http://tools.ietf.org/html/rfc2462
http://tools.ietf.org/html/rfc3263
http://tools.ietf.org/html/rfc3315
http://tools.ietf.org/html/rfc3319
http://tools.ietf.org/html/rfc3596
http://tools.ietf.org/html/rfc3633
http://tools.ietf.org/html/rfc3646
http://tools.ietf.org/html/rfc3736
http://tools.ietf.org/html/rfc3898
http://tools.ietf.org/html/rfc4033
http://tools.ietf.org/html/rfc4075
http://tools.ietf.org/html/rfc4704
http://tools.ietf.org/html/rfc5007

Dibbler – a portable DHCPv6 User’s Guide 80

[19] T. Mrugalski, “Optimization of the autoconfiguration mechanisms of the mobile stations supporting
IPv6 protocol in the IEEE 802.16 environmentdfdf”, Ph.D dissertation, Gdańsk, Oct. 2009

[20] T. Mrugalski, J.Wozniak, K.Nowicki, “Remote DHCPv6 Autoconfiguration for Mobile IPv6 nodes”,
IEEE 14th International Telecommunications Network Strategy and Planning Symposium, Warsaw,
Poland, Sept. 2010

[21] T.Mrugalski, J.Wozniak, K.Nowicki, “Remote Stateful Autoconfiguration for Mobile IPv6 Nodes
with Server Side Duplicate Address Detection”, IEEE, Australasin Telecommunication Networks and
Applications Conference, Auckland, New Zealand, Nov. 2010

[22] A.Durand, R.Droms, J.Woodyatt, Y.Lee, “Dual-Stack Lite Broadband Deployments Following IPv4
Exhaustion”, work-in-progress, Softwires WG, IETF, Aug. 2010

[23] D.Hankins, T.Mrugalski, “Dynamic Host Configuration Protocol for IPv6 (DHCPv6) Options for
Dual-Stack Lite”, work-in-progress, Softwires WG, IETF, Sept.2010

[24] T.Mrugalski, “Remote DHCPv6 Autoconfiguration”, work-in-progress, IETF, July 2010

	Intro
	Overview
	Supported parameters
	Not supported features
	Operating System Requirements
	Supported platforms

	Installation and usage
	Linux installation
	Windows installation
	Mac OS X installation
	IPv6 support
	Setting up IPv6 in Linux
	Setting up IPv6 in Windows Vista and Win7
	Setting up IPv6 in Windows XP and 2003
	Setting up IPv6 in Windows 2000
	Setting up IPv6 in Windows NT4

	Compilation
	Linux compilation
	Modern Windows (XP...Win7) compilation
	Legacy Windows (NT/2000) compilation
	Mac OS X compilation

	Features HOWTO
	Prefix delegation
	Relays
	Custom options
	Confirm
	Mobility
	Leasequery
	Stateless vs stateful and IA, TA options
	DNS Update
	Example BIND configuration
	Dynamic DNS Testing and tips
	Accepting Unknown FQDNs

	Introduction to client classification
	Client class declaration
	Access control
	Assigning clients to defined classes
	Examples of Client-Class Classifying

	Server address caching
	XML files
	Authentication and Authorization
	Exceptions: per client configuration
	Vendor specific information
	Not connected interfaces (inactive-mode)
	Parameters not supported by server (insist-mode)
	Different DUID types
	Debugging/compatibility features
	Interface-id option
	Non-empty IA_NA option
	Providing address/prefix hints

	Experimental features
	Address Parameters
	External scripts
	Remote Autoconfiguration

	Obsoleted experimental features
	Mapping prefix
	Tunnel mode

	Configuration files
	Data types
	Scopes
	Comments
	Client configuration file
	Interface declaration
	IA declaration
	Address declaration
	Standard options
	Extension options
	Stateless configuration
	Relay support

	Client configuration examples
	Example 1: Default
	Example 2: DNS
	Example 3: Timeouts and specific address
	Example 4: More than one address
	Example 5: Quick configuration using Rapid-commit
	Example 6: Stateless mode
	Example 7: Dynamic DNS (FQDN)
	Example 8: Interface indexes
	Example 9: Vendor-specific options
	Example 10: Unicast communication
	Example 11: Prefix delegation
	Example 12: Insist mode
	Example 13: Inactive mode
	Example 14: Authentication
	Example 15: Skip Confirm
	Example 15: User-defined IAID
	Example 16: DS-Lite tunnel (AFTR)
	Example 17: Custom options
	Example 18: Remote Autoconfiguration

	Server configuration file
	Global scope
	Interface declaration
	Class scope
	Standard options
	Additional options

	Server configuration examples
	Example 1: Simple
	Example 2: Timeouts
	Example 3: Limiting amount of addresses
	Example 4: Unicast communication
	Example 5: Rapid-commit
	Example 6: Access control
	Example 7: Multiple classes
	Example 8: Relay support
	Example 9: Cascade 2 relays
	Example 10: Dynamic DNS (FQDN)
	Example 11: Vendor-specific Information option
	Example 12: Per client configuration
	Example 13: Prefix delegation
	Example 14: Multiple prefixes
	Example 15: Inactive mode
	Example 16: Leasequery
	Example 17: Authentication
	Example 18: Relay support with unknown interface-id
	Example 19: DS-Lite tunnel (AFTR)
	Example 20: Custom options
	Example 21: Remote Autoconfiguration

	Relay configuration file
	Global scope
	Interface declaration
	Options

	Relay configuration examples
	Example 1: Simple
	Example 2: Unicast/multicast
	Example 3: Multiple interfaces
	Example 4: 2 relays
	Example 5: Guess-mode
	Example 6: Relaying to multicast

	Requestor configuration

	Frequently Asked Questions
	Common Questions
	Linux specific questions
	Windows specific questions

	Miscellaneous topics
	History
	Contact and reporting bugs
	Mailing lists
	Thanks and greetings

	Acknowledgements
	Bibliography

